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1. Experimental Section

General.

All chemicals were used as received unless noted otherwise. Spectrophotometric grade solvents were used without further purification. All
reported *H NMR and *3C NMR spectra were collected using 400 or 500 MHz spectrometers. Chemical shifts (3 ppm) were determined using TMS as
an internal standard; J values are given in Hz. Melting points were determined using a capillary-type apparatus. Chromatography was performed on
silica (230-400 mesh). Mass spectra were obtained via electron impact mass spectrometry with a double focusing sector mass analyzer (EI-MS) or
using a time-of-flight spectrometer in positive or negative electrospray ionization mode (TOF MS ES+ or ES-)

Preparation of 2-(2’-nitrophenyl)imidazo[1,2-a]pyridine starting from 2-aminopyridine.[S1]

A sealed tube was charged with 1-(2-nitrophenyl)ethanone (12.0 mmol, 1982 mg), 2-aminopyridine (27.6 mmol,

02N 2.3 eq., 2600 mg) and iodine (14.4 mmol, 1.2 eq., 3655 mg). The reaction mixture was stirred at 110 °C. After 4 h,

V /N the mixture was cooled to 70 °C and stirred overnight. The residue was diluted with 5 mL of distilled water, and an
/ excess of aqueous sodium hydroxide (45%) was added. The reaction mixture was stirred at 100°C for 1 h. After

N cooling to room temperature, the reaction mixture was diluted with 60 mL of ethyl acetate. 10% aqueous HCl was
NOz-PIP added to the water-organic mixture until a neutral pH was obtained. The mixture was then extracted with ethyl

acetate. The organic layer was washed with water, dried over Na,SO,, and concentrated under reduced pressure.
The product was isolated by column chromatography (silica, hexanes/ethyl acetate 6:1 - hexanes/ethyl acetate 2:1). The pure product was
obtained as a yellow solid (2210 mg, 77%). Data: mp 153-154 °C (lit. [S2] 151-152 °C); *H NMR (500 MHz, DMSO-dg, 8) 6.94 (dt, 1H, J; =6.8 Hz, J, =
1.12 Hz), 7.28 (ddd, 1H, J; =9.2 Hz, J, = 6.7 Hz, J3 = 1.3 Hz), 7.55 — 7.60 (m, 2H), 7.73 (td, 1H, J; =7.7 Hz, J, = 1.3 Hz), 7.84 (dd, 1H, J; =8.0 Hz, /, = 1.2
Hz), 7.93 (dd, 1H, J; = 7.8 Hz, J, = 1.4 Hz), 8,28 (s, 1H), 8.59 (dt, J; = 6.8 Hz, J, = 1.2 Hz); 13C NMR (125 MHz, DMSO-ds, d) 108.7, 112.4, 115.2, 115.6,
116.0, 116.1, 124.5, 126.3, 127.7, 128.4, 143.5, 145.7, 146.6; HR-TOF MS(ES+) obsd 240.0763, calcd exact mass 240.0773 Cy3H10N30, — [M+H]*.

2-(imidazo[1,2-a]pyridin-2-yl)aniline.[S1]

Ethanol solution of 2-(2’-nitrophenyl)imidazo[1,2-a]pyridine (8.0 mmol, 1910 mg) and SnCl,:2H,0 (32.0 mmol, 4

HoN eq., 7220 mg) was stirred at 100 °C for 12 h under inert atmosphere. After cooling to room temperature, using 5%

= /N NaHCO; aqueous solution pH of the reaction mixture was made slightly basic (pH 8—9). The resulting suspension
<N / was filtered through a pad of Celite, and washed with ethanol. Alcohol was evaporated and the remaining aqueous
solution was extracted with ethyl acetate. Combined organic phase was washed with water and brine, dried over

H-NHPIP Na,S04, and concentrated under reduced pressure. The product was isolated by column chromatography (silica,

hexanes/ethyl acetate 3:1). The pure product was obtained as a yellowish solid (820 mg, 49%). Data: mp 126-127
°C (lit. [S1] 126-127 °C); *H NMR (500 MHz, DMSO-ds, 8) 6.53 — 6.60 (m, 3H), 6.73 (dd, 1H, J; = 8.1 Hz, J, = 1.2 Hz), 6.92 (td, 1H, J; = 6.7, J = 1.2 Hz),
6.99 — 7.04 (m, 1H), 7.27 (ddd, 1H, J; = 9.1 Hz, J, = 6.7 Hz, J5 = 1.3 Hz), 7.54 — 7.62 (m, 2H), 8.29 (s, 1H), 8.53 (dt, 1H, J; = 6.7 Hz, J, = 1.2 Hz); 3C NMR
(125 MHz, DMSO-ds, 8) 111.0, 112.7, 116.8, 123.6, 125.5, 126.8, 127.1, 128.9, 130.5, 132.0, 139.8, 144.6, 148.8; HR-TOF MS(ES+) obsd 210.1022,

calcd exact mass 210.1031 Cy3H1oN3 — [M+H]*.

N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)acetamide.

0
Y—cH,
HN

To a solution of 2-(imidazo[1,2-a]pyridin-2-yl)aniline (0.5 mmol, 105 mg) in dichloromethane (8 ml) was added
dropwise acetyl anhydride (0.5 mmol, 1eq., 51 mg) to the mixture over 15 min at ice bath. Then warm to room
temperature and stir for about 4 hours. The mixture was washed by water and purified by column
chromatography (silica, hexanes/ethyl acetate 3:1). The pure product was obtained as a solid (116 mg, 93%).

=N Data: mp 111-112 °C; *H NMR (500 MHz, DMSO-ds, 8) 2.19 (s, 3H), 7.01 (dt, 1H, J; = 6.79 Hz, J, = 1.1 Hz), 7.13 (dt,
~ N7/ 1H, J1 = 7.5 Hz, J, = 1.1 Hz), 7.28 = 7.33 (m, 1H), 7.35 (ddd, 1H, J, = 9.1 Hz, J, = 6.8 Hz, Js = 1.2 Hz), 7.70 (dd, 1H, J; =
9.0 Hz, J, = 0.8 Hz), 7.86 (dd, 1H, J1 = 7.8 Hz, J, = 1.1 Hz), 8.46 (d, 1H, J = 8.3 Hz), 8.49 (s, 1H), 8.60 (dt, J; = 6.7 Hz,

CH5CO-NHPIP

J, = 1.2 Hz), 12.49 (s, 1H); 3C NMR (125 MHz, DMSO-ds, d) 25.0, 110.5, 113.2, 116.4, 120.1, 120.5, 123.1, 125.7,

126.8,127.4,128.3, 136.9, 140.6, 143.5, 168.1; HR-TOF MS(ES+) obsd 252.1129, calcd exact mass 252.1137 CysH14N30 — [M+H]*.
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2,2,2-trifluoro-N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)acetamide.

0
N—cF,
HN

=N
x_N Y
CF;CO-NHPIP

To a dichloromethane solution of 2-(imidazo[1,2-a]pyridin-2-yl)aniline (0.5 mmol, 105 mg) and trimethylamine
(0.5 mmol, leq., 51 mg ) TFAA (0.5 mmol, leq., 105 mg) was added dropwise to the mixture over 15 min at ice
bath. Then warm to room temperature and stir for about 6 hours. The mixture was washed by water and purified
by column chromatography (silica, hexanes/ethyl acetate 3:1). The pure product was obtained as a white solid
(120 mg, 80%). Data: mp 168-169 °C; 'H NMR (500 MHz, DMSO-ds, 8) 7.05 (dt, 1H, J; = 6.8 Hz, J, = 1.1 Hz), 7.33
(dt, 1H, J; = 7.6 Hz, J, = 1.2 Hz), 7.38 — 7.46 (m, 2H), 7.58 (dd, 1H, J; = 9.0 Hz, J, = 0.8 Hz), 7.99 (dd, 1H J; = 9.0 Hz,
J, = 1.5 Hz), 8.47 (dd, 1H, J; = 8.3 Hz, J> = 1.0 Hz), 8.61 (s, 1H), 8.63 (dt, 1H, J; = 6.8 Hz, J, = 1.1 Hz), 14.62 (s, 1H);
13C NMR (125 MHz, DMSO-dg, 8) 110.8, 113.6, 116.0, 120.7, 120.9, 125.5, 126.7, 127.1, 127.4, 128.0, 134.3, 142.6,

143.3,153.8, 154.1; HR-TOF MS(ES+) obsd 306.0855, calcd exact mass 306.0854 CisH11F3N3O — [M+H]*.

N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)-4-methylbenzenesulfonamide.[S1]

CHs3

ON
HN ©
=N
s N/

CH3CgH,Sulf-NHPIP

A mixture of 2-(imidazo[1,2-a]pyridin-2-yl)aniline (0.5 mmol, 105 mg) and 4-toluenesulfonyl chloride (0.8
mmol, 153 mg) was mixed in 5 ml of pyridine and stirred for 24h under inert atmosphere at 50 °C. Reaction
was quenching by addition of aqueous solution of HCI to reaction mixture. The resulting suspension was
diluted with water and extracted with ethyl acetate. The combined organic layer was dried over anhydrous
Na,S0,, filtered, and concentrated under reduced pressure. The pure product was obtained after
crystallization from methanol solution as a white solid (175 mg, 97%). Data: mp 181-182 °C (lit. [S1] 181-182
°C); *H NMR (500 MHz, DMSO-ds, d) 2.24 (s, 3H), 7.04 (td, 1H, J,; = 6.8 Hz, J, = 1.1 Hz), 7.09 — 7.16 (m, 3H),
7.24-7.29 (m, 1H), 7.40 (ddd, 1H J; = 9.0 Hz, J, = 6.8 Hz, J3 = 1.3 Hz), 7.48 — 7.54 (m, 3H), 7.72 (dd, 1H, J; =
9.0 Hz, J, = 0.7 Hz), 7.74 (dd, 1H, J, = 7.8 Hz, J, = 1.5 Hz), 8.37 (s, 1H), 8.57 (dt, 1H, J; = 6.8 Hz, J, = 1,1 Hz),
12.68 (s, 1H); 3C NMR (125 MHz, DMSO-ds, 6) 20.9, 110.4, 113.4, 116.3, 120.2, 121.1, 124.1, 126.3, 126.6,
126.9, 127.5, 128.7, 129.4, 135.5, 136.1, 142.8, 143.3; HR-TOF MS(ES+) obsd 364.1122, calcd exact mass
364.1120 CyoH15N30,S — [M+H]*.

2,3,4,5,6-pentafluoro-N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)benzenesulfonamide.

CoF5Sulf-NHPIP

R F
F F
O«
\/\\O F
HN
=N
U N

A mixture of 2-(imidazo[1,2-a]pyridin-2-yl)aniline (0.5 mmol, 105 mg) and pentafluorobenzenesulfonyl
chloride (0.8 mmol, 213 mg) was mixed in 5 ml of pyridine and stirred for 6h under inert atmosphere at
room temperature. Reaction was quenching by addition of aqueous solution of HCI to reaction mixture.
The resulting suspension was diluted with water and extracted with ethyl acetate. The combined organic
layer was dried over anhydrous Na,SO,, filtered, concentrated under reduced pressure and purified by
column chromatography (silica, hexanes/ethyl acetate 3:2). The pure product was obtained as a white
solid (138 mg, 63%). Data: mp 216-218 °C; *H NMR (500 MHz, C¢Ds, 8) 5.98 (td, 1H, J; = 6.8 Hz, J, = 0.8 Hz),
6.44 (m, 1H), 6.75 (s, 1H), 6.85 (td, 1H, J; = 7.5 Hz, J, = 1.0 Hz), 6.91 (d, 1H, J = 6.7 Hz), 7.05 (m, 1H), 7.14 (d,
1H, J =9.1 Hz), 7.30 (dd, 1H, J; = 7.8 Hz, J, = 1.5 Hz), 8.25 (d, 1H, J = 8.4 Hz), 14.25 (broad s, 1H); 3C NMR
(125 MHz, DMSO-ds, 8) 110.6, 113.6, 114.6, 116.0, 121.7, 122.7, 125.6, 126.7, 127.0, 128.0, 129.0, 133.8,
136.1, 138.2, 142.0, 142.4, 142.9, 143.3, 145.0; HR-TOF MS(ES+) obsd 440.0506, calcd exact mass 340.0492
Ci19H11N30,FsS — [M+H]*.
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Computational details.

Geometry optimizations were performed to explore minimum energy structures for ground state using density functional theory (DFT)
with the PBE1PBE[S3] (hereafter also termed PBEO, its usual name in the literature) hybrid functional. This functional provides a good
description of hydrogen bond interactions.[S4, S5] Pople’s 6-311++G(d,p) triple-§ quality basis set[S6] with polarization and diffused
functions was employed. Normal mode vibrational frequencies were also calculated in each case to confirm the presence of the local
minimum, at the same level of theory. To simulate the effect of solvent, the geometries of selected conformers were optimized using a
self-consistent reaction field (SCRF) approach coupled with integral equation formalism of the polarizable continuum model
(IEFPCM).[S7, S8] For the thermodynamics of ESIPT, the geometries of the ground states were optimized by the density functional theory
(DFT) with a B3LYP hybrid function method and the first excited-state structures were optimized by the time-dependent density
functional theory (TDDFT) methodology with a CAM-B3LYP hybrid function in combination with a polarizable continuum model (PCM) in
toluene. The 6-311++G(d,p) basis set was employed for all atoms. Single-point excited-state energies were also calculated using the TD-
B3LYP theory with a 6-311++G(d,p) basis set under the structures optimized at the TD-CAM-B3LYP/6-311++G(d,p) level. All calculations
were carried out using the Gaussian 09 program.[S9]

Spectroscopic measurements

Steady-state absorption spectra were recorded using a Hitachi U-3310 spectrophotometer, and emission spectra were obtained using an
Edinburgh FS920 fluorimeter. Detailed time-resolved spectroscopic measurements have been reported previously.[S10] In brief,
nanosecond time-resolved experiments were performed by using an Edinburgh FLS920 time-correlated single photon-counting (TCSPC)
system with a pulsed hydrogen-filled lamp as the excitation source. Data were fitted with the sum of exponential functions using a
nonlinear least-squares procedure in combination with a convolution method. Sub-nanosecond to nanosecond time-resolved studies
were performed using another TCSPC system (OB-900 L lifetime spectrometer, Edinburgh) with an excitation light source from the
second-harmonic generation (SHG, 360 nm) of pulse selected femtosecond laser pulses at 720 nm (Tsunami, Spectra-Physics). The
fluorescence was collected at a right angle with respect to the pump beam path and passed through a polarizer, which was located in
front of the detector. The polarization was set at a magic angle (54.7°) with respect to the pump polarization direction to eliminate
anisotropy. Similar data analysis and fitting procedures were applied. The temporal resolution, after partial removal of the instrumental
time broadening, was ~20 ps.

Ultrafast spectroscopic study of the titled compounds was performed by a femtosecond photoluminescence up-conversion (uPL)
system. The femtosecond oscillator (Tsunami, Spectra-Physics) mentioned in the previous paragraph was used with the central output
wavelength at 720 nm. In this measurement, fluorescence from a rotating sample cell was focused in a BBO crystal, and its frequency
was summed along with an interrogation gate pulse at a designated delay time with respect to the pump pulse. A half-wave plate was
used to set the pump polarization at a magic angle (54.7°) with respect to the gate pulse to prevent the fluorescence anisotropy
contributed by solute reorientation. Fluorescence up-conversion data were fitted to the sum of exponential functions convoluted with
the instrument response function (IRF). The IRF was determined from the Raman scattering signal, and its profile was fitted to a
Gaussian function with a full width at half- maximum of ~150 fs.
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Scheme S1. Homodesmotic reaction used for the estimation of hydrogen bond strength.
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Figure S1. Scaled stacked *H NMR spectra of CsFsSulf-NHPIP in various solvents.
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Figure S2. NOESY spectrum (left), *H NMR (bottom right) and selective NOE NMR (top right) spectra of 2-(imidazo[1,2-a]pyridin-2-
yl)aniline in DMSO-ds solution.
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Figure S4. Decay kinetic acquired by pico-nanosecond time correlated single photon counting (TCSPC) for CH3CgHaSulf-NHPIP in toluene. The data
points (blue and red) shown are with monitored at normal and tautomer emission, respectively. Solid lines depict the best biexponential fits. The
fitting parameters are summarized in Table 2. A,=360nm.
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(a) H-NHPIP

N* TS* T*
Figure S5. Geometrical structures of N*, TS* and T* species of compounds (a) H-NHPIP and (b) CH;CO-NHPIP
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H-NHPIP. CAM-B3LYP/6-311+g(d,p)/Cyclohexane (IEFPCM)
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Figure S6. Potential energy diagram for singlet excited-state transitions of (a) H-NHPIP and (b) CH;CO-PIP.
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Equilibrium constant of chemical reaction related to the standard Gibbs free energy is shown in eq. S1. Taking into account that
calculated Gibbs free energy of reaction can be expressed by eq. S3, where g + Georr is sum of electronic and thermal Free Energies and
also in view of two-component character of mixture, a concentration of the conformer H-NHPIP can be found following eq. S4. Relation
between concentration of H-NHPIP(r) and concentration of H-NHPIP is shown by eq. S2.

e {_ A,G(2981<)} _ [H- NHPIP(1)] s
RT [H — NHPIP]

[H — NHPIP(r)]= 1 - [H — NHPIP] (S2)

A/<G(298K) = (‘90 + G(‘urr)H—NHP]P(r) - (80 + Gcorr)HfNHP[P (S3)

-1
& +G. —(&, +G,
[H _ NHPIP(I')] _ [Cxp {_ ( 0 corr )HfNHPIP(r;zT( 0 wrr)HfNHI’IP } + 1:| ( S4)

Table S1. Sum of electronic and thermal free energies, reaction Gibbs free energy and concentrations of H-NHPIP and H-NHPIP(r)
conformers calculated for the gas phase and dimethyl sulfoxide (DMSO) medium described by polarizable continuum model.

Solvent Gas phase DMSO
Sum of electronic and thermal free energies (€0+Gcorr)
for H-NHPIP, Hartree -665.484292 -665.496155
Sum of electronic and thermal free energies (€o0+Gcorr) for H-NHPIP(r),

Hartree -665.478906 -665.492516

Reaction Gibbs free energy, kcal/mol 3.380 2.283

[H-NHPIP] in mixture, % 99.66 97.90

[H-NHPIP(r)] in mixture, % 0.34 2.10

S10



Table S2. Computed absorption/emission wavelengths and oscillator strengths (f) of the first singlet excitation/relaxation in their normal or
tautomer forms and the frontier orbitals for the titled compounds in their normal form involved in the first singlet excitation.

cpds in toluene Acal.abs/nM (f) Acalem/nNM (f)l] HOMO LUMO

378(0.2908)  N: 409 (0.392)

H-NHPIP 338 (0.2759)*  T:688(0.217)

N: 379 (0.472)

CH3CO-NHPIP 340(0.3781) o (0.181)

CH3CeH,Sulf- N: 373 (0.426)
NHPIP 330(0.3376) 1 o5 (0.230)

N: 367 (0.425)

CsFsSulf-NHPIP 331 (0.0447) T: 509 (0.294)

N: 370(0.477)

CF3CO-NHPIP 331 (0.4404) T: 520(0.243)

[2IN = normal emission; T = tautomer (ESIPT) emission. * H-NHPIP (r)
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2-(imidazo[1,2-a]pyridin-2-yl)aniline
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N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)acetamide
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2,2,2-trifluoro-N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)acetamide
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CH;

N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)-4-methylbenzenesulfonamide
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2,3,4,5,6-pentafluoro-N-(2-(imidazo[1,2-a]pyridin-2-yl)phenyl)benzenesulfonamide
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