Supporting Information

for Ms

Molybdena Deposited on Titania by Equilibrium Deposition Filtration: Evolution of the Structural Configuration of Oxo-Molybdenum (VI) Sites with Temperature

George Tsilomelekis,^{1,3,†} George D. Panagiotou,² Panagiota Stathi,⁴ Angelos G. Kalampounias,^{1,‡} Kyriakos Bourikas,⁵ Christos Kordulis,^{2,3} Yiannis Deligiannakis,⁴ Soghomon Boghosian,^{*,1,3} and Alexis Lycourghiotis²

¹Department of Chemical Engineering, University of Patras, GR-26504, Patras, GREECE

² Department of Chemistry, University of Patras, GR-26504, Patras, GREECE

- ³ FORTH/ICE-HT, GR-26504, Patras, GREECE
- ⁴ Lab of Physical Chemistry, Materials and Environment, Department of Physics, University of Ioannina, GR-45110, Ioannina, GREECE
- ⁵ School of Science and Technology, Hellenic Open University, GR-26223 Patras, GREECE

Figure S1. EPR spectra for reference $TiO_2/P25$ samples. Black lines: dark; red lines: illuminated samples. (a) wet sample; (b) dried sample; and (c) calcined sample. In (a), the blue arrow marks the position where the lattice electrons from anatase phase are expected to show up.⁴⁶

Figure S2. EPR spectra for 2.6MoTi samples. Black lines: dark; red lines: illuminated samples. (a) wet sample; (b) dried sample; and (c) calcined sample. In (a), the blue arrow marks the position where the lattice electrons from anatase phase are expected to show up.⁴⁶

In the wet sample, anatase and rutile electrons are photoinduced,⁴³ together with a considerable amount of h^+ centers^{44,S1}. It is well known that anatase is the photoactive phase that transfers rapidly electrons on the surface, *i.e.* that in turn would interact with surface bound species such as Mo⁶⁺ to reduce it to Mo⁵⁺. It is also well known that rutile serves to optimize the e⁻/h⁺ separation, decreasing the recombination rate. This has been amply analyzed in ref. 41 as well as in ref. S1. The e-transfer activity of rutile is inferior than anatase's.

Thus in the present work, the relative intensities of these e^- and h^+ signals should be viewed through a mutual e^-/h^+ balance^{41, S1}: processes that quench electrons would result in increased h^+ signals and *vice-versa*.

Indeed, in the present study we observed two interrelated phenomena: (*i*) the electrons of anatase are rapidly transferred to the Mo-species forming Mo^{5+} ; (*ii*) the anatase holes are increased in the presence of Mo. Tighter association of Mo on TiO₂, for example in the 450°C-treated sample increases the holes due to e-tranfer to Mo-species. In contrast, in the reference TiO₂/P25 (without deposited Mo-oxo species) calcination at 450°C had the opposite effect, *i.e.* enhancing the electrons and suppressing the holes. In all cases electrons in rutile are inactive thus they show up with considerable intensity, however these are non-reactive, *i.e.* they cannot be transferred to Mo-species. This is why rutile-electrons are always present in all samples.

References

S1. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, *J. Phys. Chem. B*, 2003, 107, 4545.