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PREVIOUS WORKS ON SELF-ASSEMBLY

In the following we demonstrate how previous literature approaches to 2D self-assembly are
contained in the theoretical framework presented in this work. The seminal work by Reuter and
Scheffler (RS) [1] to model the surface stability of ruthenium oxide is analyzed first. In this
approach, the most stable structure and composition is the one that minimizes the surface free
energy (Eq. 2 in RS)

γ =
1

2Aslab
[Gslab −NRuµRu −NOµO] (S1)

with Aslab and Gslab being the surface area and the free energy of the simulated supercell (DFT and
periodic conditions are used), NRu and NO are the number of ruthenium and oxygen atoms on the
surface, and µRu and µO their chemical potentials in the gas phase. Here, the area is multiplied by
two as the oxide is modeled as a slab with two identical surfaces exposed to the gas phase. Using
Eq. S1 for a general assembly reaction producing a SAM made of α molecules of A, the surface
free energy of RS can be written as

γ =
1

Asam
[Gsam − αµA] (S2)

Assuming extensibility of the free energy of the supercell, which is a no-condition since a supercell
approach assumes it by definition, the relations Asam = αA′

uc and Gsam = αµ′uc hold, and yield

γ =
1

A′
uc

[
µ′uc − µA

]
(S3)

which is Eq. 19 in the Main Text. Assuming that µ′uc = E′
uc, which implies that the translational,

rotational and vibrational contributions the chemical potential of the SAM are negligible, RS gives

γ =
1

A′
uc

[
E′

uc − µA

]
(S4)

providing the definition of γ by Kučera and Gross (KG) [2] as well as that of the ∆G of self-assembly
in Meier, Ziener et al. (MZ) [3] (with ρ = 1/A′

uc). Although this approximation is reasonable for
the chemisorption of gases as shown by RS, it is generally too strong for a physisorbed SAM at the
solid-liquid interface. In fact, as illustrated in the Main Text for a series of cases, the vibrational
contribution to the chemical potential of the SAM or the free monomer in solution can be sizable.
However, since the molecular building blocks analyzed here are rather rigid, the vibrational free
energy change on self-assembly per molecules is close to zero and can be safely ignored. This
observation implies that instead of Eq. S4, a more correct expression of γ would be

γ =
1

A′
uc

[
E′

uc − (µA − µvib,A)
]

(S5)

which involves no a priori assumption on the magnitude of the vibrational contribution to the
chemical potential. It follows that the plots in Fig. 6 of KC and Fig. 9 of MZ are actually shifted
by the quantity µvib,A/A′

uc on the x axis. In addition and unlike in RS, in KG and MZ there is no
link between µA and the monomer concentration in solution, which is the experimental quantity
under control. Finally, in KG the energy of adsorption is the only contribution to the unit cell
energy, which implies that Esam and Estrain in Eq. 14 of the Main Text are neglected. The strain
energy is also neglected in MZ.
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A similar approach was developed by Loffreda, Delbecq and Sautet (LDS) [4], which uses an
adaptation of RS to study the chemisorption of acrolein on platinum (Eq. 1 in LDS)

∆G =
Θ

Auc

(
∆Eads − 3kT + ∆ZPE −NAkT ln

1
ZtrZrot

−NAkT ln
P

P0

)
(S6)

In this formulation the chemical potential of the free monomer is separated into an internal energy
contribution arising from the rigid-body rotations and translations of the molecule (3kT ), an elec-
tronic contribution including the zero point vibrational energy that enters into ∆Eads and ∆ZPE,
an entropy contribution associated with the translational and rotational degrees of freedom, which
is accessed through the configurational partition functions Ztr and Zrot, and a term that links di-
rectly to the pressure of acrolein in the gas phase. Although, it is not clear why the full vibrational
contribution was omitted, Eq. S6 is essentially equivalent to Eq. S21, which can be derived from
Eq. 19 in the Main Text by separating out the enthalpy versus entropy contributions, as we shall
see.

The same expression for the surface free energy was obtained by Gutzler, Lackinger et al.
(GL) [5] and Dienstmaier, Lackinger et al. (DL) [6] following a completely different approach. In
these works, the free energy change on self-assembly is evaluated from the combination of a per
unit of area, per molecule contribution as

∆g =
∆G

A
=

∆H

A
− T∆S

A
(S7)

with A being the surface area occupied by one molecule, ∆H the energy gain per molecule calculated
by force field or empirical interaction energy models, and ∆S the entropy loss per molecule. Clearly,
∆g is equivalent to the surface free energy γ presented in the Main Text. Interestingly, in GL and
DL the entropy change in Eq. S7 is evaluated using a statistical mechanics approach. First, the
total entropy change is decomposed in translational, rotational, vibrational, and conformational
contributions as

∆S = ∆Str + ∆Srot + ∆Svib + ∆Sconf (S8)

Then, assuming that the molecular building blocks are rigid and that upon self-assembly they com-
pletely lose all translational and rotational degrees of freedom, the vibrational and conformational
contributions vanish and ∆S can be obtained from the translational and rotational entropy of the
solution state as

∆S = − (Str + Srot) (S9)

where both Str and Srot are evaluated analytically using statistical thermodynamics and a free
volume correction for the translation entropy [7] (not used in the present work). Introducing this
result in Eq. S7 yields

γ =
1

A′
uc

[
E′

uc + T (SA,tr + SA,rot)
]

(S10)

where the area per molecule A and the enthalpy variation ∆H have been replaced by the corre-
sponding A′

uc and E′
uc used in the present work. Clearly, the result of Eq. S10 is equivalent to

Eq. 19 of the Main Text when the vibrational contribution is neglected. Also, this comparison
shows that in the derivation of GL and DL the 3RT corresponding to the internal energy of a
rigid monomer is erroneously missing.
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Finally, we show that the orthogonal approach by Lei, De Feyter et al. (LDF) [8], Bellec,
Charra et al. (BC) [9], and Blunt, De Feyter et al. (BDF) [10] to study the 2D phase transition
between a porous and a dense architectures as a function of monomer concentration or temperature
can also be reconducted to our theory. In this case, the chemical reaction studied is

dD 
 pP + (d− p) A (S11)

where d molecules in the dense SAM (D) are converted in p molecules in the porous SAM (P ) thus
releasing d − p molecules in solution. The stoichiometric coefficients d and p are proportional to
the surface area covered by one molecule in the two different SAMs, and thus can be expressed as
d = 1/A′

uc,d and p = 1/A′
uc,p. At chemical equilibrium, the difference in chemical potentials for the

reaction above is zero, which yields (Eq. 1 in LDF)

dµD = pµP + (d− p) µA (S12)

with µD, µP and µA the chemical potentials per molecule of the dense, porous and monomeric
state, respectively. Remarkably, the result of Eq. S12 can be obtained using the expression of γ in
Eq. 22 of the Main Text and by imposing γD = γP . Based on LDF, BC developed an expression
for the critical concentration of monomers corresponding to a 2D phase transition (Eq. 8 in BC)

C0 = exp
(
−S0

k

)
exp

[
− 1

kT

(
HD − HP −HD

m− 1

)]
(S13)

Interestingly, by rearranging this result into

C0 = exp
[

1
kT

(
HD + TS0

AD
− HP + TS0

AP

)
AP AD

AP −AD

]
(S14)

with Hi and Ai being the enthalpy gain and unit cell area of the two SAMs, and S0 is the entropy
associated to the confinement of one monomer to the surface, and noticing that (Hi + TS0)/Ai

provides an approximated expression for the surface free energy γi = (µi − µA)/Ai, which is
straightforward to see by separating the enthalpy versus entropy contributions, one recovers Eq. 25
of the Main Text. A more complete expression for the critical concentration C0 was derived by
BDF when considering the entropy change associated with solvent coadsorption.

Overall, this analysis demonstrates that the principal equations of previously established and
conceptually orthogonal methods to predict 2D self-assembly can be rederived based on Eq. 19 of
the Main Text.
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DECOMPOSITION OF THE SURFACE FREE ENERGY IN ENERGETIC AND
ENTROPIC CONTRIBUTIONS

As defined in the Main Text, the surface free energy is

γ =
1

A′
uc

(
µ′uc − µA

)
(S15)

where the unit cell chemical potential µ′uc is

µ′uc = E′
uc + µ′uc,vib (S16)

and the chemical potential of the monomer in solution µA can be decomposed in translational,
rotational and vibrational contributions:

µA = µA,tr + µA,rot + µA,vib (S17)

No energetic contribution for the molecule in solution is present, since, from the definition of the
unit cell energy, the energy of the molecule in solution is the zero of the energy scale. Substituting
these expressions into the definition of γ one obtains

γ =
1

A′
uc

(
E′

uc + µ′uc,vib − µA,tr − µA,rot − µA,vib

)
(S18)

where all chemical potential contributions can be expressed as a sum of an energetic and entropic
term:

γ =
1

A′
uc

[(
E′

uc + E′
uc,vib − EA,tr − EA,rot − EA,vib

)
− T

(
S′uc,vib − SA,tr − SA,rot − SA,vib

)]
(S19)

Noting that the energy associated with the translations and rotations is kT/2 for each degree of
freedom, the previous expression can be recast as

γ =
1

A′
uc

[(
E′

uc + ∆E′
vib − 3kT

)
− T

(
∆S′vib − SA,tr − SA,rot

)]
(S20)

If the vibrational energy and entropy are neglected, the simplified expression for γ previously used
is recovered [11, 12]:

γ =
1

A′
uc

[
E′

uc − 3kT + T (Str + Srot)
]

(S21)

From Eq. S20, it is immediate to write the surface free energy γ as a sum of energetic γE and
entropic γS contributions

γ = γE − TγS (S22)

where

γE =
1

A′
uc

(
E′

uc + ∆E′
vib − 3kT

)
(S23)

γS =
1

A′
uc

(
∆S′vib − SA,tr − SA,rot

)
(S24)
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ON THE VIBRATIONAL CONTRIBUTION

The thermodynamic analysis of 2D self-assembly into thirteen distinct SAMs (Table S3) shows
that the vibrational contribution is not always negligible. In particular in some cases such as for
coronene and perchlorocoronene self-assembly this accounts for more than 10% of the surface free
energy; see Tab. S1. In the following, we analyze the vibrational contribution of γ and identify
cases where it should be properly accounted for. Eq. S20 presents the complete deconvolution
of the chemical potential difference on self-assembly, which includes a vibrational contribution.
Following Reuter and Scheffler [1] this term is usually neglected, assuming ∆µ′vib ≈ 0 even on
physisorption [3]. As discussed in the Main Text, this approximation is valid in most cases, but
in some examples, i.e. coronene self-assembly, it is significant and corresponds to more than the
10% of the total chemical potential difference. To understand the nature of this contribution,
it is useful to decompose it in energetic (∆E′

vib) and entropic (∆S′vib) contributions, such that
∆µ′vib = ∆E′

vib − T∆S′vib.
On the energy contribution, in the classical limit each vibrational degree of freedom contributes

for kT kcal mol−1. For one monomer in solution Evib,A is thus (3N −6)kT , where N is the number
of atoms of the monomer, whereas for a SAM composed of α molecules, the vibrational energy is
(3Nα− 3)kT . Using Eq. 12 of the Main Text the vibrational energy contribution per unit cell is

E′
vib,uc = lim

α→+∞

(3Nα− 3)kT

α
= 3NkT (S25)

and

∆E′
vib = E′

vib,uc − Evib,A = 3NkT − (3N − 6)kT = 6kT (S26)

Therefore, at 300 K 2D self-assembly involves a constant vibrational energy cost of about
3.6 kcalmol−1. This is expected as the number of vibrational degrees of freedom increases upon
self-assembly, while the number of rotational and translational degrees of freedom decreases. Even
when the correct quantum expression for the vibrational energy is used, which makes this contri-
bution frequency-dependent, the vibrational energy cost remains in the range 3.7-5.2 kcalmol−1

(see Tab. S1), and is unable to account for the observed variations in ∆µ′vib.

Arch. ∆E′
vib −T∆S′

vib ∆µ′vib ∆µ′vib/∆µ−◦′ %

ISA 4.7 -6.2 -1.6 6.7

TRA 4.7 -6.1 -1.4 5.8

GUA 4.3 -6.5 -2.1 7.6

MEL 4.8 -6.2 -1.4 7.4

COR 3.7 -9.3 -5.6 19.6

CLC 4.3 -9.4 -5.1 12.0

C12 4.5 -4.3 0.2 -1.2

B12 4.6 -3.8 0.8 -4.1

A12 4.8 -3.3 1.5 -6.3

L12 4.4 -4.3 0.1 -0.5

TMA/CHK 5.1 -5.4 -0.2 0.7

TMA/FLW 5.2 -5.3 -0.1 0.3

TMA/SFW 5.2 -5.2 0.0 0.0

TABLE S1: Difference in vibrational energy, entropy and chemical potential for the self-assembly of the
thirteen SAMs studied in this work. All values are reported in kcal mol−1.
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FIG. S1: Correlation between the difference in vibrational chemical potential and the energy of the SAM.

In sharp contrast, the entropy contribution, which is also reported in Tab. S1, spans a signifi-
cantly wider range (i.e. from -3.3 kcal mol−1 to -9.4 kcalmol−1) and is responsible for the variability
of ∆µ′vib in Tab. S1. Since all considered molecules are rather rigid, we expect no significant change
in the internal vibrations upon self-assembly and the vibrational entropy stabilization of the SAM
(−T∆S′vib < 0) arising from the intermolecular or external vibrations of the SAM. If so, one would
expect weaker intermolecular interactions in the SAM, such as Van der Waals contacts in coronene
self-assembly, to produce softer external vibrations than the strong hydrogen bonding in TMA
self-assembly and corresponds to a larger vibrational entropy stabilization. To check for this, the
correlation between ∆µ′vib and the energy of the SAM (E′

sam) has been explored. Fig. S1 shows
that the majority of the blue points lies on the linear correlation (dashed line), which implies that,
as expected, the weaker the interactions in the SAM, the larger the vibrational contribution to γ.
The only exceptions to this rule are the four points at the top of the plot, which correspond to the
linear alkane (C12) and its chemical functionalizations. Interestingly, those are the only molecules
of the dataset that are flexible. Upon self-assembly, these molecules, which find themselves in a
dense molecular environment in full interaction with the substrate, actually lose vibrational en-
tropy through conformational confinement of the dihedral angles which may counterbalance the
vibrational entropy stabilization resulting from the external vibration of the SAM. To check for
this assumption, the dihedrals of these four molecules have been restrained by an external har-
monic potential to reduce their internal flexibility, and the calculation of γ repeated. Strikingly, in
the absence of internal flexibility all points lie on a linear correlation (R2 = 0.91). Based on this
analysis we can delineate two limiting scenarios. First, for rigid molecule the weaker the interac-
tions in the SAM, the more favorable the vibrational entropy contribution will be. By contrast,
very strong interactions make the vibrational contribution negligible. Second, for flexible molecules
the stronger the intermolecular interactions in the SAM, the larger the entropy destabilization to
self-assembly as the internal entropy loss is not compensated by an external entropy gain. Vice
versa, for flexible molecules and week interactions, the vibrational contribution to γ is negligible.
As a “rule of thumbs”, the following scheme can be followed:
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Molecule
Flexible Rigid

Interactions
Strong Unfavorable Negligible
Weak Negligible Favorable



S8

SOLVATION FREE ENERGY

Solvent effects on the probability of 2D self-assembly can be directly included in the definition
of the surface free energy as

γ = γE − TγS + γsolv (S27)

where γE and γS correspond to the energetic and entropic contributions to the surface free energy
(see above), and γsolv is the contribution of the solvent which is defined as

γsolv =
1

A′
uc

∆µ′solv (S28)

with ∆µ′solv being the solvation free energy change per molecule upon 2D self-assembly, that is

∆µ′solv = µ′solv,sam − µsolv,A − µ′solv,sub (S29)

where the three term in r.h.s. are the per-molecule contribution to the solvation free energy of the
SAM, the monomer, and the portion of substrate covered by the SAM. A rigorous evaluation of
∆µ′solv is computationally challenging and would require intensive free energy calculations. Based
on previous work [13, 14], the solvation free energy is approximated here as a linear function of the
solvent accessible surface area (SASA)

µi,solv = α · SASAi (S30)

with α being an empirical parameter which depends on the solvent. Introducing this result in
Eq. S29 for a SAM of N molecules and assuming the same α for the both SAM and the substrate,
it yields

∆µ′solv =
α

N
[SASAsam −N · SASAA − SASAsub] = α ∆SASA′ (S31)

which provides numerical access to the solvent contribution to the surface free energy (Eq. S28)
from the only knowledge of the SASA of the SAM, monomer and substrate, and the value of α.

In this work, the solvation correction in Eq. S31 was included in the analysis of TMA self-
assembly to quantify its impact on the critical concentrations predicted by the theory. In the
calculations, the solvent accessible surface area was evaluated using the APBS software [15] with
van der Waals radii taken from the GAFF force field [16, 17] and a probe radius of 1.4 Å. ∆SASA′

was evaluated using model architectures of about 200 molecules (200 for CHK, 216 for FLW and
196 for SFW). The value of α was obtained from the solvation free energy of model compounds and
their SASA using Eq. S30. To this aim, the solvation free energy of TMA (the molecule studied)
and coronene (as a model of graphene) have been determined by free energy perturbation (FEP)
/ molecular dynamics (MD) calculations in the apolar solvent toluene. For FEP, 10 and 21 win-
dows of 1 ns each were used to evaluate the polar (electrostatic) and the non polar (van der Waals)
contributions to the solvation free energy, respectively. All simulations were carried out using GRO-
MACS 5.1.2 [18], and the FEP analysis was performed using the Alchemical Analysis tool [19].
The µsolv calculated for TMA and coronene were −17.12 kcal mol−1 and −19.35 kcal mol−1, re-
spectively. Their SASA were 3.90 nm2 and 5.11 nm2, respectively, which provides values for the
parameter α of −4.39 kcal mol−1 nm−2 and −3.79 kcalmol−1 nm−2. Hence, an approximated value
of −4 kcalmol−1 nm−2 for α appears to be reasonable for modeling the solvation free energy of
TMA self-assembly using Eq. S31. With this value of α and the ∆SASA′ for the CHK, FLW and
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SFW architectures, i.e. −3.66, −3.72, and −3.85 nm2, respectively, the solvent contribution to the
free energy of self-assembly per molecule (Eq. S29) were 14.64, 14.88, and 15.40 kcalmol−1, for the
different architectures. Introducing these results in Eq. S28 yields surface free energy corrections of
12.09, 15.15, and 20.10 kcal mol−1 nm−2 for CHK, FLW, and SFW. As shown in the Main Text, this
causes an almost systematic shift of the critical concentrations of about ten orders of magnitude.



S10

ENERGY PER UNIT CELL LIMIT

Given a layer of n×n cells it will have (n− 2)2 internal cells and the remaining 4(n− 1) will be
border cells with missing interactions. The energy of such assembly assembly can be approximated
as

E(n) ' (n− 2)2Euc + 4(n− 1)Eborder (S32)

Given

α = ncells · nuc (S33)

and

ncells = n2 (S34)

the previous expression can be written as function of α as

E(α) '
(√

α

nuc
− 2
)2

Euc + 4
(√

α

nuc
− 1
)

Eborder = (S35)

= αE′
uc + 4 (Euc − Eborder)

(
1−

√
α

nuc

)
(S36)

When the energy of the self-assembly divided by α is studied:

E(α)
α

' E′
uc −

4 (E′
uc − E′

border)√
α/nuc

+
4 (E′

uc − E′
border)

α/nuc
(S37)

Discarding the third term, which is negligible if compared with the second, the equation reported
in the Main Text is obtained

E(α)
α

' E′
uc −

b√
α/nuc

(S38)

where b = 4 (E′
uc − E′

border).
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HYDROGEN BOND CORRECTION FOR TRIMESIC ACID

From the force field energies obtained for the trimesic acid in the three assemblies (chickenwire,
flower and superflower) it is clear that the GAFF force field is not adequate to describe the ener-
getics involved in the carboxylic acid interaction. In fact, the superflower architecture is predicted
to be the energetically most favored, while experimentally the chickenwire and the flower architec-
tures are clearly more stable [20]. To understand the problem, the interaction energy for the two
typical patterns of hydrogen bonds present in the chickenwire, flower and superflower architectures,
see Fig. S2, were benchmarked. The first kind of interaction involves linear dimers of carboxylic
acid groups and it is know to be highly stabilized by resonance, as a prototypical example of
resonance-assisted hydrogen bond (RAHB) [21]. High level of theory ab-initio calculations on this
dimer are available from the S66 database, where the dimerization energy of acetic acid dimer is
-19.41 kcalmol−1 [22]. The second hydrogen bond pattern involves three carboxylic groups and,
as opposite to the first pattern, no reference energy value was found present in literature.

FIG. S2: Sketch representations of the linear (left) and trigonal (right) hydrogen bond patterns of carboxylic
acid self-assembly.

Since no reference values for the trimer patter are present in literature, ab-initio calculation
have been performed on both systems. The chosen level of theory is a density-fitted (DF) MP2
with an extended basis sets (the aug-cc-pVTZ and the cc-pVQZ have been used). The system
was geometry optimized and then the interaction energy calculated using a counterpoise correction
(CP) to minimize the basis set superimposition error (BSSE). The resulting dimerization ener-
gies are reported in Table S2. When comparing the energy for the acetic acid dimer with the
CCSD(T)/CBS literature value, the DF-MP2/cc-pVQZ gives clearly optimal results with an error
of only 0.26 kcal mol−1. If the reference energy value of −16.41 kcal mol−1 is compared with the
GAFF value of −14.80 kcalmol−1, it is evident that this force field underestimates the interaction
energy by −4.5 kcal mol−1. In sharp contrast, for the trigonal pattern the recognition strength by
GAFF matches the value predicted by DF-MP2/cc-pVQZ. A possible reason for this could be that
while the nature of the interaction in the two cases are completely different (resonance effect in the
first, mainly electrostatic in the second), the force field models both in a pure electrostatic way.

Given these results, the energy per unit cell for the three architectures of trimesic acid have
been a posteriori corrected: for all hydrogen bond patterns of the first type found in the three
architectures, a stabilization energy of −4.5 kcalmol−1 has been added, while for the second type
of hydrogen bond pattern no correction is added. Focusing on just the first pattern of hydrogen
bonds, the chickenwire architecture has 1 occurrence inside the unit cell, plus 4 occurrences shared
with the surrounding cells. It means a total of 3 occurrences per unit cell (1 intra plus 4/2 inter),
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Acetic acid dimer Acetic acid trimer
df-MP2/aug-cc-pVTZ -18.81 -24.47

df-MP2/cc-pVQZ -19.15 -24.68
CCSD(T)/CBS [22] -19.41 //

GAFF -14.80 -24.78
Empirical Correction -4.5 //

TABLE S2: Interaction energies for the two patterns of hydrogen bonds evaluated at ab-initio (DF-MP2)
and force field (GAFF) levels of theory. All values are reported in kcalmol−1.

which correspond to a total energy correction of 3 times the −4.5 kcalmol−1. Once normalized per
the number of molecules inside the unit cell (2 for the chickenwire architecture) a final correction
on E′

uc of −6.75 kcal mol−1 is calculated. For the flower architecture the hydrogen bond pattern
count give 2 occurrences inside the cell and 8 between neighbors, which give a total correction on
E′

uc of −4.5 kcal mol−1. In the superflower architecture, no occurrences of the first pattern are
present, so no correction on the energy per unit cell is applied. In Table S3, both the uncorrected
and corrected values, marked with an asterisk (*), are reported.
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MODELED SELF-ASSEMBLED LAYERS

For each of the 13 self-assembled monolayers cited in the Main Text, atomistic molecular models
have been built to access their thermodynamic stability. The general procedure used to build the
atomistic models is as follow. Starting from the STM images, we first modeled the configuration
of the molecules inside one unit cell. To do so, one tries to collect as much information as possible
from the bright spots of the STM images. This includes: the most probable position of functional
groups, or the orientation of the molecule inside the unit cell. Once a possible configuration of
the unit cell was available, an extended supramolecular architecture was built by replicating it
onto the xy plane, using the experimental unit cell parameters as initial guess for the translation
vectors. The model architecture was then energy minimized by 1000 steps of steepest descent (SD)
followed by an adopted basis Newton Raphson (ABNR) optimization until convergence to an energy
gradient of 10−8 kcal mol−1Å−1. The self-assembled architectures were benchmarked against the
STM images mainly comparing the unit cell parameters. In case of significant disagreement, the
conformation of the molecule inside the initial unit cell was (manually) modified, optimized on
the surface and used as seed to produce a new architecture to be compared with the STM images
until a reasonable agreement with the experimental images was achieved. If more than one model
structures were compatible with the low-resolution of the STM images, the one with the lowest
surface free energy was chosen. Although a local optimization (energy minimization) is performed
at every step of the conformational search, no global optimization strategy was available to identify
automatically the most probable solution.

In the table below, the calculated thermodynamic quantities for all modeled architectures are
reported. In the next pages, all architectures are showed, with the plots of the convergence of the
unit cell chemical potential when the size of the modeled SAMs is increased.

Arch.
Monomer in solution Self-Assembled Monolayers Difference

µ−◦tr µrot µvib µ−◦tot E′
sam E′

ads E′
strain E′

uc µ′vib µ′uc ∆µ′vib ∆µ−◦′ A′
uc γ−◦ γE −Tγ−◦S log Ccac

ISA -9.0 -8.4 75.7 58.3 -18.5 -20.8 1.0 -38.3 74.2 35.9 -1.5 -22.4 59.9 -37.4 -59.1 21.7 -16.3

TRA -9.0 -7.5 75.7 59.2 -19.5 -20.8 0.9 -39.4 74.3 34.9 -1.4 -24.3 59.0 -41.2 -61.7 20.5 -17.7

GUA -9.0 -8.4 101.1 83.7 -20.9 -23.5 1.5 -42.9 99.0 56.1 -2.1 -27.6 65.9 -41.9 -61.3 19.4 -20.1

MEL -8.7 -7.7 66.0 49.6 -19.8 -16.3 2.3 -33.8 64.6 30.8 -1.4 -18.8 44.8 -42.0 -68.5 26.5 -13.7

COR -9.5 -7.8 181.7 164.4 -1.4 -38.9 0.0 -40.3 176.1 135.8 -5.6 -28.6 114.2 -25.0 -33.5 8.5 -20.8

CLC -10.3 -10.1 99.5 79.1 -6.6 -58.2 7.1 -57.7 94.4 36.7 -5.1 -42.4 163.9 -25.9 -33.7 7.8 -30.9

C12 -9.0 -8.3 214.4 197.1 -9.5 -25.2 0.1 -34.6 214.6 180.0 0.2 -17.1 77.5 -22.1 -41.3 19.2 -12.4

B12 -9.1 -8.9 215.2 197.2 -11.8 -26.6 0.2 -38.2 216.0 177.8 0.8 -19.4 81.2 -23.9 -43.6 19.7 -14.1

A12 -9.2 -9.0 202.8 184.6 -16.4 -28.0 0.9 -43.5 204.3 160.8 1.5 -23.8 81.8 -29.1 -49.6 20.5 -17.3

L12 -9.2 -9.0 207.7 189.5 -10.1 -27.7 0.1 -37.7 207.8 170.1 0.1 -19.4 82.8 -23.4 -42.4 19.0 -14.1

TMA/CHK -9.2 -8.2 81.4 64.0 -22.4 -25.7 1.3 -46.8 81.2 34.4 -0.2 -29.6 121.1 -24.4 -35.8 11.4 -21.6

TMA/CHK* -9.2 -8.2 81.4 64.0 -29.1 -25.7 1.3 -53.5 81.2 27.7 -0.2 -36.3 121.1 -30.0 -41.4 11.4 -26.5

TMA/FLW -9.2 -8.2 81.4 64.0 -23.5 -25.7 1.3 -47.9 81.3 33.4 -0.1 -30.6 98.2 -31.2 -45.3 14.1 -22.3

TMA/FLW* -9.2 -8.2 81.4 64.0 -28.0 -25.7 1.3 -52.4 81.3 28.9 -0.1 -35.1 98.2 -35.7 -49.8 14.1 -25.6

TMA/SFW -9.2 -8.2 81.4 64.0 -25.8 -25.7 1.3 -50.2 81.4 31.2 0.0 -32.8 76.6 -42.8 -61.1 18.3 -23.9

TMA/STR -9.2 -8.2 81.4 64.0 -15.9 -25.7 0.9 -40.7 79.9 39.2 -1.5 -24.8 117.0 -21.2 -32.3 11.1 -18.1

TABLE S3: All energies and chemical potentials are reported in kcalmol−1, the unit cell area in Å2, the
values of γ in kcal mol−1 nm−2, the log Ccac is the decimal logarithm of the molar concentration. The asterisk
(*) indicates that the interaction energy in the SAM is corrected to fit quantum data (see previous section).
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Isophthalic Acid
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Trimesic Acid – Chickenwire Architecture
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Trimesic Acid – Flower Architecture
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Trimesic Acid – Superflower Architecture
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Trimesic Acid – Stripe (hypotetical) Architecture
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Perchlorocoronene
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1-dodecanole

-38.5
-38

-37.5
-37

-36.5
-36

-35.5
-35

 0  50  100  150  200

µ
el

ec
 / 
α

α

Euc1
Euc2

+0.0
+0.1
+0.1
+0.2
+0.2
+0.2
+0.3
+0.3
+0.4
+0.4

 0  50  100  150  200
µ

tr
 / 
α

α

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

 0  50  100  150  200

µ
ro

t /
 α

α

215.9
215.9
215.9
216.0
216.0
216.0
216.0
216.0

 0  50  100  150  200

µ
vi

b 
/ α

α

µ−◦A,tr = -9.1 E′
ads = -26.6 µ′vib,uc = 216.0 A′

uc = 81.2
µA,rot = -8.9 E′

sam = -11.8 µ′uc = 177.8 γ−◦ = -23.9
µA,vib = 215.2 E′

strain = 0.2 ∆µ′vib = 0.8 γE = -43.6
µ−◦A,tot = 197.2 E′

uc = -38.2 ∆µ−◦ ′ = -19.4 −Tγ−◦S = 19.7
Ccac = 10−14.1



S26

Dodecanoic Acid

-44

-42

-40

-38

-36

-34

-32

 0  50  100  150  200

µ
el

ec
 / 
α

α

Euc1
Euc2

+0.0

+0.5

+1.0

+1.5

+2.0

+2.5

 0  50  100  150  200
µ

tr
 / 
α

α

-2.0

-1.5

-1.0

-0.5

0.0

 0  50  100  150  200

µ
ro

t /
 α

α

203.9

204.0

204.1

204.2

204.3

204.4

 0  50  100  150  200

µ
vi

b 
/ α

α

µ−◦A,tr = -9.2 E′
ads = -28.0 µ′vib,uc = 204.3 A′

uc = 81.8
µA,rot = -9.0 E′

sam = -16.4 µ′uc = 160.8 γ−◦ = -29.1
µA,vib = 202.8 E′

strain = 0.9 ∆µ′vib = 1.5 γE = -49.6
µ−◦A,tot = 184.6 E′

uc = -43.5 ∆µ−◦ ′ = -23.8 −Tγ−◦S = 20.5
Ccac = 10−17.3



S27

1-chlorododecane

-38

-37

-36

-35

-34

-33

-32

 0  50  100  150  200

µ
el

ec
 / 
α

α

Euc1
Euc2

+0.0

+0.5

+1.0

+1.5

+2.0

+2.5

 0  50  100  150  200
µ

tr
 / 
α

α

-2.0

-1.5

-1.0

-0.5

0.0

 0  50  100  150  200

µ
ro

t /
 α

α

207.6
207.8
208.0
208.2
208.4
208.6
208.8
209.0

 0  50  100  150  200

µ
vi

b 
/ α

α

µ−◦A,tr = -9.2 E′
ads = -27.7 µ′vib,uc = 207.8 A′

uc = 82.8
µA,rot = -9.0 E′

sam = -10.1 µ′uc = 170.1 γ−◦ = -23.4
µA,vib = 207.7 E′

strain = 0.1 ∆µ′vib = 0.1 γE = -42.4
µ−◦A,tot = 189.5 E′

uc = -37.7 ∆µ−◦ ′ = -19.4 −Tγ−◦S = 19.0
Ccac = 10−14.1



S28

∗ Electronic address: mcecchini@unistra.fr
[1] K. Reuter and M. Scheffler. “Composition, structure, and stability of RuO2 (110) as a function of

oxygen pressure”. Physical Review B, 65(3), p. 035406, 2001.
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