Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Journal Name

RSCPublishing

ARTICLE

Supporting Information on Article "Mechanistic Insights into Lithium Ion Battery Electrolyte Degradation – A Quantitative NMR Study"

S. Wiemers-Meyer, M. Winter and S. Nowak

S1 Experimental

Table S1: Bruker NMR measurement parameters.

Test series	Dilution series		Quantification	
Measurement	¹⁹ F	¹³ C	¹⁹ F	¹³ C
	${^{1}H}$	${^{1}H}$		${^{1}H}$
Bruker pulse	zgfhi	zgpg30	zg	zgpg
program	gqn.2			
Number of	64	256	32	64
seans				
d1 delay / s	8	2	2	2
Acquisition time / s	4	4.5	5	3.2

S2 Identification

Figure S1 shows the ¹H NMR spectrum of a strongly degraded LP30 sample. Not all of the signals contained in the presented spectrum are assigned to their corresponding compounds in literature. The signals of EC (4.63 ppm), DMC (3.81 ppm) and dimethyl ether (3.37 ppm) were assigned according to previous publications.^{10,11} Furthermore, there is a small singlet at 5.80 ppm (out of the displayed range), according to literature it is attributed to ethylene.¹¹ Signal 2 at 3.67 ppm is previously assigned to -(CH₂-CH₂-O-)_n-.¹¹ However, this signal as well as signal 5 (4.32 ppm) show a coupling pattern of a doublet and a triplet. Whereas an oligomer of this kind would be expected to show a singlet. This means that further measurements are necessary to assign the signals 1-6.

Figure S1: ¹H NMR spectrum of strongly degraded LP30 with 1000 vppm H_2O stored at 80 °C. *: ¹³C satellites.

Figure S2: 19 F NMR spectrum of LP30 electrolyte after storage at 60 °C for 56 days in a NMR glass tube.

Figure S3: ³¹P NMR spectrum of strongly degraded LP30 with 1000 vppm H_2O stored at 80 °C.

From the corresponding ³¹P NMR spectra (**Figure S3**) it can be concluded that all phosphates formed by degradation of PF₆ are fluorinated because all of the signals show characteristic ¹J(¹⁹F-³¹P) coupling constants (approx. 700 - 1100 Hz). In addition, the coupling patterns of the ³¹P signals enable a direct identification of the corresponding compounds because ³J(¹H-³¹P) and even ⁴J(¹H-³¹P) couplings are observable. The identified compounds are listed in **table 1**. Only in the cases of OPF₂(OH)-BF₃ and OPF₂(OCH₂CH₂-O-CH₃) ³¹P measurements were not sufficient for a complete identification of the compounds. ¹H ³¹P heteronuclear multiple bond correlation (HMBC) NMR measurements (**Figure S4**) reveal that the doublet signals 3 and 4 (**Figure S1**) may be attributed to OPF(OMe)(OH) and OPF(OMe)₂, while the doublet at 4.22 ppm reflects OPF₂(OMe).

Figure S4: ¹H ³¹P HMBC spectrum of aged LP30.

For the assignments of the signals 1, 2 and 5 several NMR measurements are necessary. ¹H ¹³C heteronuclear single quantum coherence (HSQC) and ¹H ¹³C HMBC NMR measurements reveal that the groups of signal 2 and signal 5 are adjacent and the group of

signal 1 is located at a distance of two bond lengths from the group of signal 1. Distorsionless enhancement by polarization transfer (DEPT) 90 and DEPT 135 NMR experiments disclose that the adjacent groups are CH_2 groups and that the other one is a CH_3 group. This means that these signals belong to a $-CH_2CH_2OMe$ group.

Figure S5: Integrated signal areas of quaternary carbon signals at different DEPT angles. All curves are normalized to their maxima. Black lines represent theoretical calculations for different numbers of protons according to $I(n,\beta) \propto sin[\alpha(\beta) \cdot cos(\beta)^{n-1}]$. Where n is the number of protons coupling with C_q and β is the DEPT angle. Colored lines serve as guide to the eye.

Furthermore, the ¹H ¹³C HMBC measurements show a coupling of the CH₂ signals 5 and 6 to two quaternary carbons (C_a) of two different carbonate groups at -157.3 and -157.7 ppm. Due to the low sensitivity of ¹³C measurements without decoupling, the coupling pattern of these quaternary carbons is not clear enough to identify the second group bound to the carbonate groups. In order to find out whether it is an H, CH₂ or CH₃ group, a series of DEPT measurements were performed (Figure S5). The pulse sequence intervals were adapted to the ${}^{3}J({}^{1}H-{}^{13}C)$ coupling constant and the DEPT angle was varied from 15° to 45°. By means of product operator formalism²⁷ it can be deduced that the curve shape of the integrated NMR signal area *I* is described by the following equation: $I(n,\beta) \propto sin^{[n]}(\beta) \cdot cos^{[n]}(\beta)^{n-1}$. Where n is the number of protons and β is the DEPT angle. The curve of the integrated signal areas of EC and DMC fit well to their corresponding calculated curves for four and six protons (Figure S5). The two unidentified carbon signals fit well to the calculated curve for five protons, indicating that both carbonate groups are bound to methyl groups, thus identifying signal 6 as dimethyl-2,5-dioxahexane dicarboxylate (DMDOHC) and the signals 1, 2 and 5 as 2-methoxyethyl methyl carbonate (MEMC) (Figure S6). The ¹H signals of these methyl groups do most likely overlap with the broad DMC signal. The presence of these compounds is in accordance with the findings of gas chromatography and mass spectrometry measurements of similar samples.^{7, 13, 17, 28, 29} However, the identification of their NMR signals is necessary as mentioned above because the ethylene groups of these compounds indicate that they are degradation products of EC.

Figure S6: Structures of the main degradation products of EC, dimethyl-2,5-dioxahexane dicarboxylate (DMDOHC) and 2-methoxyethyl methyl carbonate (MEMC).

The coupling pattern of signal 2 and signal 5 (Figure S1) can be explained by the Karplus equation that describes the correlation between ${}^{3}J$ coupling constants and the dihedral torsion angle. If the rotation around the C-C axis was hindered the protons of one CH₂ group would have different dihedral torsion angles to their couplings partners of the other CH₂ group. This can explain the presence of two different coupling patterns of the protons of one CH₂ group caused by three different ${}^{3}J$ coupling constants in this case, namely 0, 1.9 and 9.1 Hz.

As mentioned above, $OPF_2(OH)$ -BF₃ cannot be identified solely from the coupling pattern of its ³¹P signal. In this case the chemical shift and the coupling pattern of the ¹⁹F signals (**Table 1**) provides the required information. ¹⁹F {¹H} measurements confirm that protons do not take part in the coupling.

Figure S7: ¹H ³¹P HMBC spectrum of aged LP30 containing NMR signals of a –POCH₂CH₂- group.

A ³¹P signal at -21.9 ppm of the samples stored in glass tubes shows a coupling pattern of three triplets. The observed coupling constants (1007 Hz, 9.4 Hz, 1.9 Hz) indicate two fluorine atoms and a -OCH₂CH₂- group as coupling partners of the phosphorous atom. ¹H³¹P HMBC measurements (Figure S7) reveal that the ¹H signals of the two methylene groups are at 4.51 ppm and at 4.77 ppm. However, there is no signal found which corresponds to the group bound to the other side of the -OCH2CH2- group. According to literature the compound is OPF₂OCH₂CH₂F and the missing signal belongs to a fluorine atom.9 The 19F signals of the two fluorine atoms bound to the phosphorous are clearly observable but no corresponding ¹⁹F signal is found in the region of fluorinated alkanes (approx. -300 ppm to -150 ppm). Therefore, it is assumed that the missing part is a methoxy group, which would be in accordance with the findings of Kraft et al.23 The compound is most likely OPF₂(OCH₂CH₂OMe). Furthermore, this assignment is supported by the signal shapes of the above-mentioned ¹H signals in a ¹H $\{^{31}P\}$ NMR spectrum (**Figure S7** horizontal trace) which are similar to the methylene ¹H NMR signal shapes of the -OCH₂CH₂OMe group of MEMC (**Figure S1**).

S3 Quantification - Internal standards

The aromatic compounds meet the requirements for this application in NMR glass tubes. Their signals neither overlap with any other signal, nor decrease over time and no influence on the electrolyte degradation is observed. Trichlorofluoromethane show a decreasing signal after a few days, i.e. it is not stable at these conditions. However, the samples stored in PTFE tubes show different results. The signals of monofluorobenzene and hexafluorobenzene decrease slowly. This is most likely due to diffusion of these compounds into the PTFE material. The signal of monofluoronaphthalene does not decrease but a slight positive effect on the electrolyte stability is observed. This effect is probably too low to make any use of it in a battery cell but too high to be neglected. Trichlorofluoromethane is not stable in these samples either. This means that a quantification cannot be realized this way.