Supplementary Information

SI 1	. L	Lattice	parameters	calculated	for the	coated	NCM	samples
------	-----	---------	------------	------------	---------	--------	-----	---------

Samples	Space Group	a (Å) (±0.0003)	c (Å) (±0.0003)
Pristine		2.86736	14.1880
Zr coated NCM	R-3m	2.86768	14.1933
P coated NCM		2.86801	14.1948
Zr + P coated NCM		2.86883	14.1959

SI 2. XPS spectra of the pristine and surface modified NCM samples at the (a) Ni 2p, (b) Mn 2p, and (c) Co 2p levels

SI 3. XRD pattern of the coating material after heat treatment (a) Zr-only, (b) P-only, and (c) Zr/P coating

SI 4. Phase data

Matariala	Formation Energy	Snace groun		
	(eV/atom)	Space group		
Zr	0.0000	P6 ₃ /mmc		
0	0.0000	n/a		
Р	0.0000	$Pm3\overline{m}$		
Ν	0.0000	n/a		
Н	0.0000	n/a		
Li	0.0000	$Im\overline{3}m$		
H_2O	-1.1718	n/a		
Li ₂ O	-2.0044	$Fm\overline{3}m$		
LiH	-0.4531	$Fm\overline{3}m$		
LiOH	-1.7115	P4/nmm		
CO_2	-1.4626	n/a		
Li_2CO_3	-2.1171	C2/c		
Li_2O_2	-1.5839	P6 ₃ /mmc		
Li ₃ P	-0.8273	P6 ₃ /mmc		
Li ₂ ZrO ₃	-3.0087	C2/c		
Li ₃ PO ₄	-2.7098	P2 ₁ nm		
LiOH·H ₂ O	-1.4470	C2/m		
LiP	-0.6871	$P2_1/c$		
LiPO ₃	-2.5917	$P2_1/c$		
$LiZr_2(PO_4)_3$	-3.0952	$P2_1/c$		
P_2O_5	-2.3448	F2dd		
H_3PO_4	-1.7869	$P2_1/c$		
$Zr_2P_2O_9$	-3.2231	C2/m		
Zr ₃ O	-1.5591	P6 ₃ 22		
Zr ₃ P	-0.9350	$P4_2/n$		
Zr_7P_4	-1.3098	C2/m		
ZrH_2	-0.6465	I4/mmm		
ZrO_2	-3.7676	$P2_1/c$		
ZrP	-1.5499	P6 ₃ /mmc		
ZrC	-1.7466	Fm ³ m		
ZrP_2	-1.0841	Pmnb		
ZrP_2O_7	-3.0298	Pa3		
ZrN	-1.8985	$Fm\overline{3}m$		
LiP ₇	-0.1792	I4 ₁ /acd		
NO_2	-0.2407	n/a		
$Li_4P_2O_7$	-2.6563	PĪ		
P_2O_3	-1.7887	$P2_1/m$		
N_2O_5	-0.1913	P6 ₃ /mmc		
$Li_6Zr_2O_7$	-2.8295	C2/c		
H ₃ NO ₄	-0.8263	P2 ₁ cn		
PH ₉ N ₂ O ₄	-1.1585	$P2_1/c$		
LiNO ₃	-1.1164	$\mathbf{R}^{\frac{1}{3}}$		

SI 5. Reactions shown in the ZrO_2 -LiOH-P₂O₅ phase diagram

S.5.1. ZrO₂-P₂O₅

Reactant		Product	dH (eV)
1 ZrO ₂ +	1 $P_2O_5 \rightarrow$	$1 ZrP_2O_7 =$	-3.046
2 ZrO ₂ +	1 $P_2O_5 \rightarrow$	$Zr_2P_2O_9 =$	-3.345

S.5.2. ZrO₂-LiOH

Reactar	ıt	Product	dH (eV)
1 ZrO +	$\begin{array}{ccc} 3 & \text{LiO} \\ H & \rightarrow \end{array}$	$1 \frac{\text{Li}_2\text{ZrO}}{3} + 1 \frac{\text{LiOH}\cdot\text{H}_2}{\text{O}} =$	-0.027

S.5.3. P₂O₅-LiOH

Reactant						Prod	luct			dH (eV)
1 P ₂ O ₅ +	6	LiOH	\rightarrow	2	Li ₃ PO ₄	+	3	H ₂ O	=	-6.681
1 P_2O_5 +	3	LiOH	\rightarrow	1	Li ₃ PO ₄	+	1	H ₃ PO4	=	-4.156
2 P_2O_5 +	3	LiOH	\rightarrow	3	LiPO ₃	+	1	H ₃ PO4	=	-5.636
1 P_2O_5 +	9	LiOH	\rightarrow	2	Li ₃ PO ₄	+	3	LiOH·H ₂ O	=	-6.778

S.5.4. ZrO₂-LiOH-P₂O₅

	Reactant		Product	dH(eV)	
4 ZrO ₂ +	2 LiOH +	3 $P_2O_5 \rightarrow$	2 LiZr ₂₍ PO4) ₃ +	$1 H_2O =$	- 11.615

SI 6. ICP results

	Mole ratio, %						
Samples	Li	Ni	Co	Mn			
Pristine	1.06	0.050	0.148	0.802			
Zr coated NCM	1.06	0.050	0.148	0.802			
P coated NCM	1.05	0.050	0.148	0.802			
Zr + P coated NCM	1.08	0.050	0.148	0.802			

SI 7. SEM images of NCM samples coated with (a) $LiCoPO_4$ and (b) $LiAlPO_4$

SI 8. Relative rate capabilities of the pristine sample and Zr/P coated NCM samples with various Zr/P ratios.

SI 9. . SEM images of the Zr/P coated NCM sample with coating weights of (a) 0.5 wt. %, (b) 1 wt. %, and (c) 2 wt. %.