Supplement 3: selection of active space in CASPT2 calculations

Different phases of all shown orbital wavefunctions are depicted in different colour. Electron occupations of each orbital are noted below each figure.

$1 \quad \mathrm{SiH}_4 \longrightarrow \mathrm{SiH}_3^{\,\cdot} + \mathrm{H}^{\,\cdot}$

Figure 1: The active space used in CASPT2 calculations of SiH_4 dissociation energy. The active space includes 1s orbital on departing hydrogen, 3s orbital on silicon atom and three 2p orbitals on silicon atom and corresponding virtual orbitals. These orbitals are calculated on geometry, used for selection active space, in which separation between Si and H atoms is 5 Å. The final CASPT2 calculation for $SiH_3 + H$ system is done with the same active space, but on geometry with much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$2 \quad \mathrm{SiH}_4 \rightarrow \mathrm{SiH}_2 + \mathrm{H}_2$

symmetry used: $C_2 v$ active space: (8,8)

Figure 2: The active space used in CASPT2 calculations of $SiH_4 \longrightarrow SiH_2 + H_2$ dissociation energy. The active space includes 1s orbital on departing hydrogen atoms, 3s orbital on silicon atom and three 2p orbitals on silicon atom and corresponding virtual orbitals. These orbitals are calculated on geometry, used for selection active space, in which separation between Si and H₂ molecule is 2 Å. The final CASPT2 calculation for SiH₃+H system is done with the same active space, but on geometry with much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$3 \quad \mathrm{NH}_3 \xrightarrow{-e} \mathrm{NH}_3^{+\, \cdot}$

symmetry used: \mathcal{C}_s

NH ₃	NH ₃	$\parallel \mathrm{NH}_3^+$	$ \mathrm{NH}_3^+$
active space:	active space:	active space:	active space:
(8,8)	(8,8)	(7,8)	(7,8)
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
		6%	
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
		O	•
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.00	occupation=0.02	occupation=0.01

Table 1: The active space used in CASPT2 calculations of NH_3 ionisation.

$4 \quad \mathrm{NH}_3^{+\,\cdot} + \mathrm{NH}_3 \longrightarrow \mathrm{NH}_2^{\,\cdot} + \mathrm{NH}_4^+$

active space: (11,12)

Table 2: The active space used in CASPT2 calculations of the proton transfer between NH_3^+ and NH_3 . Orbitals on pre-reaction complex, transition state and postreaction complex are shown. Energy of reactants and products are calculated with CASPT2 calculation on geometries in which molecular fragments are separated by large separation (> 20 Å). Separated reactants were subjected to optimisation in order allow breaking of symmetry of pre-reaction complex.

$\boxed{\begin{array}{c} \mathrm{NH}_3^+ \cdot + \mathrm{NH}_3\\ _{(\mathrm{pre-reaction \ complex})}\end{array}}$	transition state	$\frac{\mathrm{NH}_{2}^{\cdot} + \mathrm{NH}_{4}^{+}}{}_{(\text{postreaction complex})}$	$\operatorname{NH}_{3}^{+} + \operatorname{NH}_{3}_{(\text{pre-reaction complex})}$	transition state	$\frac{\mathrm{NH}_{2}^{\cdot} + \mathrm{NH}_{4}^{+}}{_{(\text{postreaction complex})}}$
è>	۵ 🏉		ۇپە دەپ	ê 🔎	6
occupa-	occupa-	occupa-	occupa-	occupa-	occupa-
tion=1.99			tion=0.01	tion=0.01	tion=0.01
	6	🍥 🌍	20	• 🎙 🍢	98 80
occupa-	occupa-	occupa-	occupa-	occupa-	occupa-
_tion=1.99		_tion=1.99		_tion=0.01	_tion=0.01
	ê res e	8	}-≥	3	6
occupa-	occupa-	occupa-	occupa-	occupa-	occupa-
					tion=0.01
}-8	n 🖗		00 00	** *	
occupa-	occupa-	occupa-	occupa-	occupa-	occupa-
_tion=1.98	_tion=1.00	_tion=0.99		_tion=0.02	_tion=0.02
? ~	8	88	~ •	8.0	- 😤 🍝
occupa-	occupa-	occupa-	occupa-	occupa-	occupa-
tion=1.98	tion=1.98	tion=1.98	tion=0.02	tion=0.02	tion=0.02
	67 2		6 🧑	6~~~	N e
occupa-	occupa-	occupa-	occupa-	occupa-	occupa-
tion=1.00	tion=1.98	tion=1.98	tion=0.02	tion=0.02	tion=0.01

$5 \quad \mathbf{NH_3} \to \mathbf{NH_2^{\cdot}} + \mathbf{H^{\cdot}}$

symmetry: C_s active space: (8,8)

Figure 3: The active space used in CASPT2 calculations of NH_3 dissociation energy. The active space includes 1s orbital on departing hydrogen, 3s orbital on silicon atom and three 2p orbitals on silicon atom and corresponding virtual orbitals. These orbitals are calculated on geometry, used for selection active space, in which separation between Si and H atoms is 5 Å. The final CASPT2 calculation for $NH_2 + H$ system is done with the same active space, but on geometry with much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\mathbf{6} \quad \mathbf{NH_3} + \mathbf{SiH_4} \rightarrow \mathbf{H_2NSiH_3} + \mathbf{H_2}$

symmetry used: C_s active space: (10,10)

$\rm NH_3 + SiH_4$	transition state	$\rm NH_2SiH_3+H_2$	$\rm NH_3 + SiH_4$	transition state	$\rm NH_2SiH_3+H_2$
occupation=1.99	occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.01	occupation=0.02
					a a a a a a a a a a a a a a a a a a a
occupation=1.99	occupation=1.99	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.01
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.03
-		9	()		G ià
occupation=1.98	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.03	occupation=0.01

$\mathbf{7} \quad \mathbf{NH_2SiH_3} + \mathbf{NH_3} \rightarrow \mathbf{NH_2SiH_2NH_2} + \mathbf{H_2}$

symmetry used: C_1 active space: (10,10)

Table 4: The active space used in CASPT2 calculations for neutral-neutral eliminative association. Orbitals of prereaction complex, transition state and postreaction complex (shown below) are checked if they are converged into a desired state. In the CASPT2 calculations of energies of reactants $(NH_2SiH_3+NH_3)$ and products $(NH_2SiH_2NH_2+H_2)$, molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\rm NH_2SiH_3 + NH_3}{\rm (pre-reaction \ complex)}$	transition state	$(\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{H}_2$	$\frac{\mathrm{NH}_2\mathrm{SiH}_3 + \mathrm{NH}_3}{_{(\mathrm{pre-reaction\ complex})}}$	transition state	$(\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{H}_2$
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.03

$8 \quad (\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{NH}_3 \rightarrow (\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}_2$

symmetry used: C_1 active space: (10,10)

Table 5: The active space used in CASPT2 calculations for neutral-neutral eliminative association. Orbitals of prereaction complex, transition state and postreaction complex are shown below. These orbitals are checked if they are converged into a desired state. In the CASPT2 calculations of energies of reactants $((NH_2)_2SiH_2 + NH_3)$ and products $((NH_2)_3SiH + H_2)$, molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{(\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{NH}_3}{(\mathrm{pre-reaction\ complex})}$	transition state	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}_2$	$(\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{NH}_3$	transition state	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}_2$ (postreaction complex)
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=1.98
occupation = 1.99	occupation=0.02	occupation = 0.02		occupation=0.02	occupation = 0.02
occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation=1.98	occupation=0.02
occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.98	accumation=1.08	occupation=1.08	occupation=0.02	accumation=0.03	occupation=0.02

9 $(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{NH}_3 \rightarrow (\mathrm{NH}_2)_4\mathrm{Si} + \mathrm{H}_2$

symmetry used: C_s active space: (10,10)

Table 6: The active space used in CASPT2 calculations for neutral–neutral eliminative association. Orbitals of pre– reaction complex, transition state and postreaction complex are shown below. These orbitals are checked if they are converged into a desired state. In the CASPT2 calculations of energies of reactants ($(NH_2)_3SiH + NH_3$) and products ($(NH_2)_4Si + H_2$), molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{NH}_3$	transition state	$(\mathrm{NH}_2)_4\mathrm{Si} + \mathrm{H}_2$	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{NH}_3$ (pre-reaction complex)	transition state	$(\mathrm{NH}_2)_4\mathrm{Si} + \mathrm{H}_2$
	occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
	_occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	_occupation=0.02	occupation=0.02
	eccupation=1.08	occupation=1.08	eccupation=1.08	ecoupation=0.02		occupation=0.02
Ì	occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02		
	occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
				and the second s		
	occupation = 1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation = 0.02	occupation = 0.02

$10 \quad \mathbf{NH_2SiH_3} + \mathbf{SiH_4} \rightarrow \mathbf{SiH_3NHSiH_3} + \mathbf{H_2}$

symmetry used: C_1 active space: (10,10)

$\boxed{ \begin{array}{c} \mathrm{NH}_2\mathrm{SiH}_3 + \mathrm{SiH}_4 \\ _{(\mathrm{pre-reaction \ complex})} \end{array} }$	transition state	$(SiH_3)_2NH + H_2$ (postreaction complex)	$\frac{\mathrm{NH}_{2}\mathrm{SiH}_{3} + \mathrm{SiH}_{4}}{_{(\mathrm{pre-reaction \ complex})}}$	transition state	$(\text{SiH}_3)_2\text{NH} + \text{H}_2$
I	- Pro-				
_occupation=1.98	occupation=1.98	_occupation=1.97	_occupation=0.02	_occupation=0.02	_occupation=0.03
A		3	, , , , , , , , , , , , , , , , , , , 		8
_occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	cccupation=0.02
occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02

$(SiH_3)_2NH + SiH_4 \rightarrow (SiH_3)_3N + H_2$

symmetry used: C_1 active space: (10,10)

$\begin{array}{ c c c c }\hline (\mathrm{SiH}_3)_2\mathrm{NH} &+ \\ \mathrm{SiH}_4 & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $	transition state	$({\rm SiH}_3)_3{\rm N} + {\rm H}_2_{\rm (postreaction \ complex)}$	$(\text{SiH}_3)_2\text{NH} + \text{SiH}_4$ (pre-reaction complex)	transition state	$({\rm SiH}_3)_3{\rm N} + {\rm H}_2_{\rm (postreaction \ complex)}$
accupation=1.08	accupation=1.08	accupation=1.08	accumption=0.02	accupation=0.03	accumption=0.02
	100	1			1
		× ×	A	Ţ,	
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
}			* >-		
occupation=1.98	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.01	occupation=0.02
- ۲	6		- -	÷	
occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
			ح ي		
occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation = 0.02	occupation=0.03

12 $(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{NH}_2\mathrm{SiH}_3 \rightarrow (\mathrm{NH}_2)_3\mathrm{SiNHSiH}_3 + \mathrm{H}_2$

symmetry used: C_s active space: (10,10)

Table 9: The active space used in CASPT2 calculations for neutral–neutral eliminative association. This reaction represents possible silicon nitride growth reaction. Orbitals of pre–reaction complex, transition state and postreaction complex are shown below. These orbitals are checked if they are converged into a desired state. In the CASPT2 calculations of energies of reactants ($(NH_2)_3SiH+NH_2SiH_3$) and products ($(NH_2)_3SiNHSiH_3+H_2$), molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{(\mathrm{NH}_2)_3\mathrm{SiH}}{\mathrm{NH}_2\mathrm{SiH}_3} + \\ \frac{\mathrm{NH}_2\mathrm{SiH}_3}{(\mathrm{pre-reaction\ complex})} + $	transition state	$(\mathrm{NH}_2)_3\mathrm{Si}$ $\mathrm{NH}_2\mathrm{SiH}_3 + \mathrm{H}_2$ (postreaction complex)	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{NH}_2\mathrm{SiH}_3$ (pre-reaction complex)	transition state	$(\mathrm{NH}_2)_3\mathrm{Si}$ $\mathrm{NH}_2\mathrm{SiH}_3 + \mathrm{H}_2$ (postreaction complex)
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sect.	
occupation=1.98	occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.02	occupation=0.02
			<b>~</b>		*
occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
	-				
occupation=1.98	_occupation=1.98	occupation=1.98	_occupation=0.02	occupation=0.03	occupation=0.03
~ <b>~</b> ~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
occupation=1.98	occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02

# $13 \quad \mathrm{NH_2SiH_3} \rightarrow \mathrm{NH_2SiH} + \mathrm{H_2}$

symmetry used:  $C_1 v$ active space: (10,10)

NH ₂ SiH ₃ transition state       NH ₂ SiH + H ₂ NH ₂ SiH ₃ transition state       N         occupation=1.98       occupation=1.98       occupation=1.98       occupation=0.02       occupation=0.02       occupation=0.06       o         occupation=1.98       occupation=1.98       occupation=1.98       occupation=0.02       occupation=0.01						
Image: constraint of constra	$\rm NH_2SiH_3$	transition state	$\rm NH_2SiH + H_2$	$\rm NH_2SiH_3$	transition state	$\rm NH_2SiH + H_2$
occupation=1.97       occupation=1.99       occupation=1.99       occupation=1.93       occupation=0.02       occupation=0.02         occupation=1.98       occupation=1.98       occupation=1.98       occupation=0.02       occupation=0.02       occupation=0.02         occupation=1.98       occupation=1.98       occupation=0.08       occupation=0.01       occupation=0.01	occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.06	occupation=0.02
occupation=1.97       occupation=1.99       occupation=1.93       occupation=0.02       o         occupation=1.98       occupation=1.98       occupation=0.02       occupation=0.01						
Image: second	occupation=1.97	occupation=1.99	occupation=1.99	occupation=1.93	occupation=0.02	occupation=0.02
	occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.08	occupation=0.01	occupation=0.01
occupation=0.02 occupation=1.92 occupation=0.03 occupation=0.02 occupation=0.02	occupation=0.02	occupation=1.92	occupation=0.03	occupation=0.02	occupation=0.02	occupation=0.02

# 14 $(\mathrm{NH}_2)_2\mathrm{SiH}_2 \rightarrow (\mathrm{NH}_2)_2\mathrm{Si} + \mathrm{H}_2$

symmetry used:  $C_s$ active space: (8,8)

$(\mathrm{NH}_2)_2\mathrm{SiH}_2$	transition state	$(\mathrm{NH}_2)_2\mathrm{Si} + \mathrm{H}_2$	$(\mathrm{NH}_2)_2\mathrm{SiH}_2$	transition state	$(\mathrm{NH}_2)_2\mathrm{Si} + \mathrm{H}_2$
occupation=2.00	occupation=2.00	occupation=1.99	occupation=0.02	occupation=0.13	occupation=0.02
occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.07
occupation=2.00	occupation=2.00	occupation=1.99	occupation=0.02	occupation=0.01	occupation=0.01
	occupation = 1.88	occupation=1.04			

# 15 $\operatorname{NH}_2\operatorname{SiH}_3 \longrightarrow \operatorname{SiH}_3^{\,\cdot} + \operatorname{NH}_2^{\,\cdot}$

symmetry used:  $C_s$ active space: (10,10)

Table 12: The active space used in CASPT2 calculations for dissociation of SiN bond.

$\rm NH_2SiH_3$	$SiH_3 + NH_2$	$\rm NH_2SiH_3$	$SiH_3^{\cdot} + NH_2^{\cdot}$	
<b>4</b>	•	<b>*</b> *	<b>A</b>	
occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.02	
<b>%</b>	× 🍎	1	y ち	
occupation=1.98	occupation=1.98	occupation=0.01	_occupation=0.02	
•	<b>••</b>		6	
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	
96	ج الج	● <	۶	
occupation=1.98	occupation=1.00	occupation=1.98	occupation=1.98	
25	7	8	8	
occupation=0.02	occupation=1.00	occupation=0.02	occupation=0.02	

### $16 \quad (\mathbf{NH}_2)_2\mathbf{SiH}_2 \rightarrow \mathbf{NH}_2\mathbf{SiH}_2^{\,\cdot} + \mathbf{NH}_2^{\,\cdot}$

symmetry used:  $C_1$  active space: (10,10)

Table 13: The active space used in CASPT2 calculations for dissociation of SiN bond.

$(\mathrm{NH}_2)_2\mathrm{SiH}_2$	$\mathrm{NH}_{2}\mathrm{SiH}_{2}^{\cdot} + \mathrm{NH}_{2}^{\cdot}$	$(\mathrm{NH}_2)_2\mathrm{SiH}_2$	$\rm NH_2SiH_2^{\cdot} + NH_2^{\cdot}$	
<b>Š</b>	• K	<b>\$</b>	*	
_occupation=1.99	occupation=1.99	occupation=0.02	_occupation=1.00	
	> 🍝	Set.	🔮 🕹	
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	
occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.02	
	<b>,</b>		8 X	
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	
•	🤹 🤾	87	🗣 🕻	
occupation=1.98	occupation=1.00	occupation=0.02	occupation=0.02	

### 17 $(\mathrm{NH}_2)_3\mathrm{SiH} \rightarrow (\mathrm{NH}_2)_2\mathrm{SiH}^+ + \mathrm{NH}_2^+$

symmetry used:  $C_1$  active space: (10,10)

Table 14: The active space used in CASPT2 calculations for dissociation of SiN bond.

$(\mathrm{NH}_2)_3\mathrm{SiH}$	$(\mathrm{NH}_2)_2\mathrm{SiH}^{\cdot} + \mathrm{NH}_2^{\cdot}$	$(\mathrm{NH}_2)_3\mathrm{SiH}$	$(\mathrm{NH}_2)_2\mathrm{SiH}^{\cdot} + \mathrm{NH}_2^{\cdot}$	
•	• *	<b>₿</b> ¢	<ul> <li></li></ul>	
occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.02	
•	» 🥐	<b>₩</b>	<b>()</b>	
occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.02	
occupation=1.98	occupation=1.97	occupation=0.02	occupation=0.02	
<b>e</b> ?	» 😍	Ø¢		
occupation=1.98	occupation=1.00	occupation=1.97	occupation=1.98	
ø¢:	<b>e</b> 🐔	<b>\$</b> ‡	<b>b</b>	
occupation=0.02	occupation=0.99	occupation=0.02	occupation=0.02	

# 18 $(\mathrm{NH}_2)_4\mathrm{Si} ightarrow (\mathrm{NH}_2)_3\mathrm{Si}^+ + \mathrm{NH}_2^+$

symmetry used:  $C_s$ active space: (10,10)

Table 15: The active space used in CASPT2 calculations for dissociation of SiN bond.

$(\mathrm{NH}_2)_3\mathrm{SiH}$	$(\mathrm{NH}_2)_2\mathrm{SiH}^{\cdot} + \mathrm{NH}_2^{\cdot}$	$(\mathrm{NH}_2)_3\mathrm{SiH}$	$(\mathrm{NH}_2)_2\mathrm{SiH}^{\cdot} + \mathrm{NH}_2^{\cdot}$	
	•		iii 0.00	
_occupation=1.98	occupation=1.99	_occupation=0.02	occupation=0.02	
<b>*</b>	» 🚅	<b>.</b>	<b>()</b>	
_occupation=0.02	occupation=1.00	_occupation=0.03	occupation=0.01	
occupation=1.98	occupation=1.98	occupation=0.01	s ecupation=0.01	
<b>8</b>	e \$	€¢	•	
occupation=1.97	occupation=1.00	occupation=1.98	occupation=1.98	
I I I I I I I I I I I I I I I I I I I	s 🌻	€¢	• ‡	
occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.02	

### 19 $(SiH_3)_2NH \rightarrow SiH_3NH^{+} + SiH_3^{+}$

symmetry used:  $C_1$  active space: (10,10)

Table 16: The active space used in CASPT2 calculations for dissociation of SiN bond.

$(SiH_3)_2NH$	$SiH_3NH^{\cdot} + SiH_3^{\cdot}$	$(SiH_3)_2NH$	$SiH_3NH' + SiH_3'$
occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.93
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
	Companient The	Security 102	<b>%</b>
occupation=1.98	occupation=1.07	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01

### $20 \quad (\mathrm{SiH}_3)_3\mathrm{N} \to (\mathrm{SiH}_3)_2\mathrm{N}^{\,\cdot} + \mathrm{SiH}_3^{\,\cdot}$

symmetry used:  $C_s$ active space: (10,10)

Table 17: The active space used in CASPT2 calculations for dissociation of SiN bond.

$(SiH_3)_3N$	$(SiH_3)_2NH' + SiH_3'$	$(SiH_3)_3N$	$(SiH_3)_2NH^{\cdot} + SiH_3^{\cdot}$	
X			×	
_occupation=1.99	occupation=2.00	_occupation=0.02	occupation=0.02	
*	۶	×.	۶• 🦚	
_occupation=1.99	occupation=1.98	_occupation=0.01	occupation=0.01	
		Ť.	۶ مې	
occupation=1.98	occupation=1.55	_occupation=0.02	occupation=0.02	
	۶ 🌾	, Ček	<b>()</b>	
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.44	
Ť.	۶ 🌾	<b>X</b>	۶ 🌾	
occupation=1.98	occupation=1.97	occupation=0.02	occupation=0.03	

# $21 \quad \mathrm{NH}_3 + \mathrm{SiH}_3^{\,\cdot} \rightarrow \mathrm{NH}_3\mathrm{SiH}_3^{\,\cdot}$

symmetry used:  $C_s$ active space: (7,7)

$\mathrm{NH}_3 + \mathrm{SiH}_3^{\cdot}$	transition state	NH ₃ SiH ₃	$\rm NH_3 + SiH_3$	transition state	NH ₃ SiH ₃
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.01
occupation=1.99	occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.00	occupation=1.00	occupation=1.00			

# $\mathbf{22} \quad \mathbf{NH_3} + \mathbf{NH_2SiH_3^{+}} \rightarrow \mathbf{NH_2SiH_2NH_3^{+}}$

symmetry used:  $C_s$ active space: (7,7)

$\mathrm{NH}_3 + \mathrm{NH}_2\mathrm{SiH}_3^{\cdot}$	transition state	$\rm NH_2SiH_2NH_3^+$	$\mathrm{NH}_3 + \mathrm{NH}_2\mathrm{SiH}_3^+$	transition state	$\rm NH_2SiH_2NH_3^{\cdot}$
occupation=1.99	occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.01
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.00	occupation=1.00	occupation=1.00			

# $23 \quad \mathrm{NH}_3 + (\mathrm{NH}_2)_2 \mathrm{SiH}^{\,\cdot} \rightarrow (\mathrm{NH}_2)_2 \mathrm{SiHNH}_3^{\,\cdot}$

symmetry used:  $C_1$  active space: (9,9)

$\mathrm{NH}_3 + \mathrm{NH}_2\mathrm{SiH}_3^-$	transition state	NH ₂ SiH ₂ NH ₃	$\mathrm{NH}_3 + \mathrm{NH}_2\mathrm{SiH}_3^-$	transition state	NH ₂ SiH ₂ NH ₃
	<u>ک</u>	€¢	, <b>Ç</b>		60
_occupation=1.99	occupation=1.98	occupation=1.99	occupation=1.00	occupation=1.00	occupation=0.02
	🍃 💕				
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=1.00
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=0.02	occupation=0.03	occupation=0.02			

# $24 \quad \mathrm{NH_3SiH_3^{+}} \rightarrow \mathrm{NH_2SiH_3} + \mathrm{H^{+}}$

symmetry used:  $C_s$ active space: (9,10)

Table 21: The active space used in CASPT2 calculations for dissociation of NH bond.

${\mathop{\rm SiH}}_3{\mathop{\rm NH}}_3^{\cdot}$	transition state	$\frac{\mathrm{NH}_{2}\mathrm{SiH}_{3} + \mathrm{H}^{*}_{\mathrm{(postreaction complex)}}}{}$	${\mathop{\rm SiH}}_3{\mathop{\rm NH}}_3^{\cdot}_{({\rm pre-reaction\ complex})}$	transition state	$\frac{\mathrm{NH}_{2}\mathrm{SiH}_{3} + \mathrm{H}}{_{\mathrm{(postreaction complex)}}}$
		· •			
_occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.01	_occupation=0.01	occupation=0.02
Ş	, en	۰ <b>چ</b>			•
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.00
		• <b>•</b>			1
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.03	occupation=1.00
		· •			
occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.02	occupation=1.98	occupation=0.02
		, <b>(</b>		<b>•</b>	· ·
occupation=0.02	occupation=0.02	occupation=0.02	occupation=1.98	occupation=0.02	occupation=1.97

# 25 $\mathrm{NH}_2\mathrm{SiH}_2\mathrm{NH}_3^{\,\cdot} \rightarrow (\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{H}^{\,\cdot}$

symmetry used:  $C_s$  active space: (9,10)

Table 22: The active space used in CASPT2 calculations for dissociation of NH bond.

$\frac{\mathrm{NH}_{2}\mathrm{SiH}_{2}\mathrm{NH}_{3}}{\mathrm{(pre-reaction complex)}}$	transition state	$(\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{H}^{\cdot}$	$\frac{\mathrm{NH}_{2}\mathrm{SiH}_{2}\mathrm{NH}_{3}}{\mathrm{(pre-reaction complex)}}$	transition state	$(\mathrm{NH}_2)_2\mathrm{SiH}_2 + \mathrm{H}^{\cdot}$
		· ·			
occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
<b>*</b>	<b>*</b>	· ·			· •
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.00
				<b>,</b>	· ·
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
					· · ·
occupation=1.00	occupation=1.00	occupation=1.00	occupation=1.98	occupation=1.98	occupation=1.98
<b>\$</b>		·			● ° ≫◆
occupation=0.02	occupation=0.03	occupation=0.02	occupation=0.02	occupation=0.02	occupation=0.02

# 26 $(\mathrm{NH}_2)_2\mathrm{SiHNH}_3^{\cdot} \rightarrow (\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}^{\cdot}$

symmetry used:  $C_1$  active space: (9,10)

Table 23: The active space used in CASPT2 calculations for dissociation of NH bond.

$(\mathrm{NH}_2)_2\mathrm{SiHNH}_3^{\cdot}$	transition state	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}^{\cdot}$	$(\mathrm{NH}_2)_2\mathrm{SiHNH}_3$	transition state	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}^{\cdot}$
_occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.02	_occupation=0.03	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.00	occupation=1.00	occupation=1.00	occupation=0.01	occupation=0.01	occupation=0.01

# 27 $(\mathrm{NH}_2)_3\mathrm{SiHNH}_3^{\cdot} \rightarrow (\mathrm{NH}_2)_4\mathrm{SiH} + \mathrm{H}^{\cdot}$

symmetry used:  $C_s$ active space: (9,10)

Table 24: The active space used in CASPT2 calculations for dissociation of NH bond.

$(\mathrm{NH}_2)_3\mathrm{SiHNH}_3^{\cdot}$	transition state	$(\mathrm{NH}_2)_4\mathrm{SiH} + \mathrm{H}^{\cdot}$	$(\mathrm{NH}_2)_3\mathrm{SiHNH}_3^{\cdot}$	transition state	$(\mathrm{NH}_2)_4\mathrm{SiH} + \mathrm{H}^{\cdot}$
occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.00
occupation=1.00	occupation=1.00	occupation=1.00	occupation=1.98	occupation=1.98	occupation=1.97
_ occupation=0.02	_ occupation=0.05	1 occupation=0.02	0.02	occupation=0.02	occupation=0.02

#### $\mathbf{28} \quad \mathbf{NH_3} + \mathbf{SiH_2} \rightarrow \mathbf{NH_3SiH_2}$

# symmetry used: $C_1 v$ active space: (10,10)

Table 25: Active orbitals, used in the calculation of dissociation curve of  $NH_3SiH_2$ . Shown orbitals are for the minimum energy geometry and for the geometry with Si—N separation of 4Å.

	3		R 📀
occupation=1.99	occupation=1.98	occupation=0.02	occupation=0.02
R	z 🌔	r Se	z 🥠
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=0.05	occupation=0.09
	<b>? ?</b>		3
occupation=1.95	occupation=1.91	occupation=0.01	occupation=0.02

#### $\mathbf{29} \quad \mathbf{SiH}_2 + \mathbf{NH}_2\mathbf{SiH}_3 \rightarrow \mathbf{SiH}_2\mathbf{NH}_2\mathbf{SiH}_3$

symmetry used:  $C_1 v$ active space: (10,10)

Table 26: Active orbitals, used in the calculation of dissociation curve of  $SiH_2NH_2SiH_3$ . Shown orbitals are for the minimum energy geometry and for the geometry with Si—N separation of 4.5Å.

1		<b>•</b>	
occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.05
1		î 🥭	
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01
î 🌖		î 🌖	•
occupation=1.98	occupation=1.99	occupation=0.02	occupation=0.02
î 🌖.		î 🌷	ret-
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
<b>?</b>		î <b>(</b> ).	
occupation=1.90	occupation=1.96	occupation=0.02	occupation=0.02

### $30 \quad \mathrm{SiH}_2 + \mathrm{NH}(\mathrm{SiH}_3)_2 \rightarrow \mathrm{SiH}_2\mathrm{NH}(\mathrm{SiH}_3)_2$

symmetry used:  $C_1 v$ active space: (10,10)

Table 27: Active orbitals, used in the calculation of dissociation curve of  $SiH_2NH(SiH_3)_2$ . Shown orbitals are for the minimum energy geometry and for the geometry with Si—N separation of 2.87Å.

occupation=1.99	occupation=1.99		occupation=0.02
occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02
occupation=1.95	occupation=1.92	occupation=1.98	occupation=1.98
occupation=0.05	occupation=0.08	occupation=0.02	occupation=0.02

#### $\mathbf{31} \quad \mathbf{NH_3} + \mathbf{SiH_2NH_3} \rightarrow \mathbf{NH_3SiH_2NH_3}$

symmetry used:  $C_1 v$ active space: (14,14)

Table 28: Active orbitals, used in the calculation of dissociation curve of  $NH_3SiH_2NH_3$ . Shown orbitals are for the minimum energy geometry and for the geometry with Si—N separation of 3.5Å.

	» n	💰 8 봘	» x 🛸	<b>()</b> x <b>()</b>	» x
occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=1.98	occupation=1.98
occupation=1.98	occupation=1.98	occupation=0.02		occupation=0.02	
occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.02	occupation=0.02
occupation=1.96	occupation=1.95	occupation=0.04	occupation=0.05		

#### $32 \quad \mathrm{NH_3SiH_2} \rightarrow \mathrm{NH_2SiH_3}$

symmetry used:  $C_s$ active space: (10,10)

$\mathrm{NH_{3}SiH_{2}}$	transition state	NH ₂ SiH ₃	$\rm NH_3SiH_2$	transition state	NH ₂ SiH ₃
2			re-D		
_occupation=1.99	occupation=1.99	occupation=1.99	occupation=0.02	occupation=0.08	occupation=0.01
Ţ	<b>?</b>			<b>,</b>	
_occupation=1.95	occupation=1.92	occupation=1.98	_occupation=0.05	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	accupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02

# $SiH_2NH_2SiH_3 \rightarrow NH(SiH_3)_2$

symmetry used:  $C_1$  active space: (10,10)

$\rm SiH_2NH_2SiH_2$	transition state	$\rm SiH_3 NHSiH_3$	$\rm SiH_2NH_2SiH_2$	transition state	$\rm SiH_3 NHSiH_3$
	occupation=1.99	_occupation=1.98	occupation=0.01	occupation=0.08	occupation=0.01
				1	>
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.05	occupation=0.01	occupation=0.03
occupation=1.50	occupation=1.50	occupation=1.56	_occupation_0.05	occupation=0.01	occupation=0.05
		<b>?</b>	·t		<b>90</b>
occupation=1.98	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
		<b>9</b>			
occupation=1.95	occupation=1.92	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02

# 34 $\operatorname{SiH}_2\operatorname{NH}(\operatorname{SiH}_3)_2 \to \operatorname{N}(\operatorname{SiH}_3)_3$

symmetry used:  $C_s$ active space: (10,10)

$\mathrm{SiH}_2\mathrm{NH}(\mathrm{SiH}_3)_2$	transition state	$N(SiH_3)_3$	$\mathrm{SiH}_2\mathrm{NH}(\mathrm{SiH}_3)_2$	transition state	$N(SiH_3)_3$
_occupation=1.98	$_$ occupation=1.98 $_$	occupation=1.98	$_$ 0ccupation=0.02 $_$	_occupation=0.08	
		× P	×.		
occupation=1.95	occupation=1.92	occupation=1.98	occupation=0.05	occupation=0.01	occupation=0.03
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
occupation=1.98	occupation=1.97	occupation=1.97	occupation=1.98	occupation=1.98	occupation=1.98
	÷		÷.		
occupation=0.02	occupation=0.03	occupation=0.02	occupation=0.02	occupation=0.02	occupation=0.02

### $\mathbf{35} \quad \mathbf{NH}_2^{\,\cdot} + \mathbf{SiH}_4 \longrightarrow \mathbf{NH}_2\mathbf{SiH}_3 + \mathbf{H}^{\,\cdot}$

symmetry used:  $C_s$ active space: (9,10)

$\mathrm{NH}_2^{\cdot} + \mathrm{SiH}_4$	transition state	$NH_2SiH_3 + H$	$\mathrm{NH}_2^{\cdot} + \mathrm{SiH}_4$	transition state	$NH_2SiH_3 + H$
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
•		°			
_occupation=1.98	_occupation=1.97	occupation=1.97	_occupation=0.02	occupation=0.03	_occupation=0.02
occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.00
occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.02	
occupation=0.99	$\perp$ occupation=1.00	$\downarrow$ occupation=1.00	$\parallel$ occupation=0.05	0.02	0.02

# $36 \quad \mathbf{NH_2^{\cdot} + \mathbf{NH_2SiH_3} \rightarrow \mathbf{NH_2SiH_2NH_2 + H^{\cdot}}}$

symmetry used:  $C_1$  active space: (9,10)

$\mathrm{NH}_2^{\cdot} + \mathrm{NH}_2\mathrm{SiH}_3$	transition state	$\operatorname{SiH}_2(\operatorname{NH}_2)_2 + \mathrm{H}^{\cdot}$	$\mathrm{NH}_2^{\cdot} + \mathrm{NH}_2\mathrm{SiH}_3$	transition state	$\operatorname{SiH}_2(\operatorname{NH}_2)_2 + \operatorname{H}^{\cdot}$
			<b>, 200</b>		• •
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.01
			<b>کې چې</b>		•
_occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.03	occupation=0.02	occupation=0.01
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.01	occupation=0.01	occupation=0.02
occupation=0.99	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.02	occupation=0.02
0.000upanon-0.99		1 occupation-1.00	0.02	0.02	0.02

# 37 $\mathrm{NH}_2^{\,\cdot} + (\mathrm{NH}_2)_2 \mathrm{SiH}_2 \rightarrow (\mathrm{NH}_2)_3 \mathrm{SiH} + \mathrm{H}^{\,\cdot}$

symmetry used:  $C_s$ active space: (9,10)

$\mathrm{NH}_{2}^{\cdot} + (\mathrm{NH}_{2})_{2}\mathrm{SiH}_{2}$	transition state	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}^{\cdot}$	$\mathrm{NH}_{2}^{\cdot} + (\mathrm{NH}_{2})_{2}\mathrm{SiH}_{2}$	transition state	$(\mathrm{NH}_2)_3\mathrm{SiH} + \mathrm{H}^{\cdot}$
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.00	occupation=0.03	occupation=0.02
occupation=1.97	occupation=1.00	occupation=0.99	occupation=0.02	occupation=0.01	occupation=0.01
occupation=1.98	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
occupation=1.00	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.03	occupation=0.03

# $38 \quad \mathrm{NH}_2^{\,\cdot} + (\mathrm{NH}_2)_3\mathrm{SiH} \rightarrow (\mathrm{NH}_2)_4\mathrm{Si} + \mathrm{H}^{\,\cdot}$

symmetry used:  $C_s$ active space: (9,10)

$\mathrm{NH}_2^{\cdot} + (\mathrm{NH}_2)_3 \mathrm{SiH}$	transition state	$(\mathrm{NH}_2)_4\mathrm{Si} + \mathrm{H}^{\cdot}$	$\mathrm{NH}_{2}^{\cdot} + (\mathrm{NH}_{2})_{3}\mathrm{SiH}$	transition state	$(\mathrm{NH}_2)_4\mathrm{Si} + \mathrm{H}^{\cdot}$
	~		·		~ <b>\$</b> @
	35.00	and the second s			
occupation=1.98	_occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
				-	~ <u>}</u>
_occupation=1.00	_occupation=1.98	_occupation=1.98	_occupation=0.00	_occupation=0.01	_occupation=0.01
occupation=1.98	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.03	occupation=0.02
					***************************************
occupation=1.98	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
OCCUDATION = 1.97	$\perp$ occupation=1.00	$\pm$ occupation=0.99	$\square$ OCCUDATION=0.02	⊢ occupation=0.05	= 0CCUDALION $= 0.05$

#### $\mathbf{39} \quad \mathbf{SiH}_3^{\,\cdot} + \mathbf{SiH}_4 \longrightarrow \mathbf{SiH}_4 + \mathbf{SiH}_3^{\,\cdot}$

symmetry used:  $C_s$  active space: (7,7)

Table 36: The active space used in CASPT2 calculations for the proton transfer reaction. This reaction is symmetric, so only the pre-reaction complex and the transition state are calculated. The postreaction complex is symmetrically identical to the pre-reaction complex and, therefore their energies and orbitals should be equal. Energies of reactants are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation. The Energy of products are taken as equal to the energy of reactant since in this case the symmetry applies too.

$SiH_4 + SiH_3$		transition state	$SiH_4 + SiH_3$	transition state
	occupation=2.00	0 $0$	occupation=0.01	occupation=0.01
		2.00		occupation 0.01
	≁ 🌔	<b>9</b> , 🌒	10 10	John Harris
	occupation=1.99	occupation=2.00	occupation=0.01	occupation=0.01
	1		(1)	
	_occupation=1.98	occupation=1.96	occupation=0.02	occupation=0.03
	÷ 🌖			
	occupation=1.00	occupation=1.00		

#### $40 \quad \mathrm{SiH}_3^{\,\cdot} + \mathrm{SiH}_3\mathrm{NH}_2 \rightarrow \mathrm{SiH}_4 + \mathrm{H}_2\mathrm{SiNH}_2^{\,\cdot}$

# symmetry used: $C_1$ active space: (7,7)

Table 37: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\boxed{\begin{array}{c} \mathrm{SiH}_3^{} + \mathrm{H}_3\mathrm{SiNH}_2\\ _{(\mathrm{pre-reaction\ complex})}\end{array}}$	transition state	$\begin{array}{c} \mathrm{SiH}_4 + \mathrm{H}_2 \mathrm{SiNH}_2 \\ _{\mathrm{(postreaction complex)}} \end{array}$	$SiH_3 + H_3SiNH_2$ (pre-reaction complex)	transition state	$\frac{\text{SiH}_4 + \text{H}_2\text{SiNH}_2}{_{(\text{postreaction complex})}}$
2	ð 🔨	<i>ò</i> 🔊	به 📚		چ 💰
_occupation=1.99	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
	2 🥏	<b>)</b>	\$	<b>*</b> *	<b>***</b>
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.02
X 🔥		7 名	χ 虔	200	7 🎭
_occupation=1.00	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
occupation-1.98	occupation=1.00	occupation=1.00			

### $41 \quad \mathrm{SiH}_3^{\,\cdot} + \mathrm{SiH}_2(\mathrm{NH}_2)_2 \rightarrow \mathrm{SiH}_4 + \mathrm{SiH}(\mathrm{NH}_2)_2^{\,\cdot}$

# symmetry used: $C_1$ active space: (7,7)

Table 38: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\operatorname{SiH}_3^{\cdot} + \operatorname{SiH}_2(\operatorname{NH}_2)_2$	transition state	$\operatorname{SiH}_4 + \operatorname{SiH}(\operatorname{NH}_2)_2^{\cdot}$	$\operatorname{SiH}_3 + \operatorname{SiH}_2(\operatorname{NH}_2)_2$	transition state	$\operatorname{SiH}_4 + \operatorname{SiH}(\operatorname{NH}_2)_2^{\cdot}$
	<b>%</b>			<b>**</b>	
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.01	occupation=0.02	_occupation=0.01
🔶 🍸	<b>•</b>		-12 🛜	<b>€</b> ●	
_occupation=2.00	occupation=1.98	occupation=2.00	occupation=0.02	occupation=0.02	occupation=0.02
- <b>X</b> Y		- <b>34 5</b>			-34 🌘
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.03	occupation=0.02
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.03	occupation=0.02

### $42 \quad \mathrm{SiH}_3^{\,\cdot} + \mathrm{HSi}(\mathrm{NH}_2)_3 \rightarrow \mathrm{SiH}_4 + \mathrm{Si}(\mathrm{NH}_2)_3^{\,\cdot}$

# symmetry used: $C_s$ active space: (7,7)

Table 39: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\text{SiH}_{3}^{\cdot} + \text{HSi}(\text{NH}_{2})_{3}}{_{(\text{pre-reaction complex})}}$	transition state	$\operatorname{SiH}_4 + \operatorname{Si}(\operatorname{NH}_2)_3^{\cdot}_{3}_{(\text{postreaction complex})}$	$\frac{\text{SiH}_{3}^{\cdot} + \text{HSi}(\text{NH}_{2})_{3}}{(\text{pre-reaction complex})}$	transition state	$\operatorname{SiH}_4 + \operatorname{Si(NH}_2)_3$
<b>*</b> *	•	<b>.</b>	<b>*</b>		s st
_occupation=1.98	occupation=2.00	occupation=2.00	_occupation=0.02	_occupation=0.00	occupation=0.02
			مر مر		
_occupation=2.00	_occupation=2.00	occupation=1.98	_occupation=0.02	_occupation=0.01	_occupation=0.02
J. Ch		Constant and a second			and the second second
*		• 🥭 🐣	- <u>-</u> <u>-</u>		
occupation=1.97	occupation=1.96	• • • • • • • • • • • • • • • • • • •	occupation=0.01	occupation=0.03	occupation=0.01
occupation=1.97	occupation=1.96	occupation=1.97	occupation=0.01	occupation=0.03	occupation=0.01

#### $\mathbf{43} \quad \mathbf{NH}_2^{\cdot} + \mathbf{SiH}_4 \longrightarrow \mathbf{NH}_3 + \mathbf{SiH}_3^{\cdot}$

### symmetry used: $C_s$ active space: (10,10)

Table 40: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on geometries in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\mathrm{NH}_2^{\cdot} + \mathrm{SiH}_4}{_{(\mathrm{pre-reaction \ complex})}}$	transition state	$\frac{\mathrm{NH}_3 + \mathrm{SiH}_3}{_{(\text{postreaction complex})}}$	$\frac{\mathrm{NH}_2^{\cdot} + \mathrm{SiH}_4}{_{(\mathrm{pre-reaction \ complex})}}$	transition state	$\frac{\rm NH_3 + SiH_3}{\rm (postreaction \ complex)}$
occupation=1.08	occupation=1.08				
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
🌒 🎾			<b>(1)</b>	Pro.	🍖 🍾
occupation=1.98	occupation=1.00	occupation=1.97	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.07	occupation=1.07				
		occupation=0.99		occupation=0.02	
4 💣		٠	<b>!</b>		۵ 🎓
occupation=1.00	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
<b>e</b>		9 >	<b>a</b> >		ا الج
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.03	occupation=0.03	occupation=0.03

#### $44 \quad \mathbf{NH}_2^{\cdot} + \mathbf{SiH}_3\mathbf{NH}_2 \rightarrow \mathbf{NH}_3 + \mathbf{H}_2\mathbf{SiNH}_2^{\cdot}$

# symmetry used: $C_1$ active space: (10,10)

Table 41: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\mathrm{NH}_2^{\boldsymbol{\cdot}} + \mathrm{H}_3\mathrm{SiNH}_2}{_{(\mathrm{pre-reaction\ complex})}}$	transition state	$\frac{\mathrm{NH}_3 + \mathrm{H}_2\mathrm{SiNH}_2^{\cdot}}{_{\mathrm{(postreaction complex)}}}$	$\frac{\mathrm{NH}_2^{\cdot} + \mathrm{H}_3\mathrm{SiNH}_2}{_{(\mathrm{pre-reaction \ complex})}}$	transition state	$\frac{\mathrm{NH}_3 + \mathrm{H}_2\mathrm{SiNH}_2^{\cdot}}{_{\mathrm{(postreaction complex)}}}$
					X 崎
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
1	-	X 🌔	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Х 💈
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.03	occupation=0.03	occupation=0.02
occupation=1.08	compation=1.07				
		occupation=1.97		occupation=0.01	
7	- <b>∖</b>	Х 🌑		~	X 🔊
_occupation=0.99	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.02	occupation=0.02
		* 🏅	<b>*</b>		X 👀
occupation = 1.97	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.03	occupation=0.02

### $45 \quad \mathrm{NH}_2^{\,\cdot} + \mathrm{SiH}_2(\mathrm{NH}_2)_2 \rightarrow \mathrm{NH}_3 + \mathrm{HSi}(\mathrm{NH}_2)_2^{\,\cdot}$

# symmetry used: $C_1$ active space: (10,10)

Table 42: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\mathrm{NH}_2^{\cdot} + \mathrm{SiH}_2(\mathrm{NH}_2)_2}{_{\mathrm{(pre-reaction complex)}}}$	transition state	$\frac{\mathrm{NH}_3 + \mathrm{SiH}(\mathrm{NH}_2)_2}{_{(\text{postreaction complex})}}$	$\frac{\mathrm{NH}_2^{\cdot} + \mathrm{SiH}_2(\mathrm{NH}_2)_2}{(\mathrm{pre-reaction \ complex})}$	transition state	$\frac{\mathrm{NH}_3 + \mathrm{SiH}(\mathrm{NH}_2)_2}{_{(\text{postreaction complex})}}$
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.01
+fr	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- to the second	-+	~~~	
_occupation=0.99	_occupation=1.97	occupation=1.97	occupation=0.02	occupation=0.02	occupation=0.02
occupation=0.97	occupation=1.97	occupation=1.97	occupation=0.01	occupation=0.01	occupation=0.02
occupation=1.97	occupation=1.97	occupation=1.98	occupation=0.03	occupation=0.03	occupation=0.02
		<b></b>			and the second
occupation=1.98	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.03	occupation=0.02

### $46 \quad \mathbf{NH}_2^{\,\cdot} + \mathrm{SiH}(\mathbf{NH}_2)_3 \rightarrow \mathbf{NH}_3 + \mathrm{Si}(\mathbf{NH}_2)_3^{\,\cdot}$

# symmetry used: $C_s$ active space: (10,10)

Table 43: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\mathrm{NH}_2^{\boldsymbol{\cdot}} + \mathrm{SiH}(\mathrm{NH}_2)_3}{_{(\mathrm{pre-reaction \ complex})}}$	transition state	$\frac{\mathrm{NH}_3 + \mathrm{Si}(\mathrm{NH}_2)_3}{_{(\text{postreaction complex})}}$	$\frac{\mathrm{NH}_{2}^{\cdot} + \mathrm{SiH}(\mathrm{NH}_{2})_{3}}{}_{(\text{pre-reaction complex})}$	transition state	$NH_3 + Si(NH_2)_3$ (postreaction complex)
					S.
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.03	occupation=0.02
		<b>%</b>		-	
occupation=0.97	occupation=1.97	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
occupation=0.99	occupation=1.97	occupation=1.97	occupation=0.01	occupation=0.02	occupation=0.02
occupation=1.98	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.02	occupation=0.01
					•
occupation=1.97	occupation=1.97	occupation=1.97	occupation=0.03	occupation=0.03	occupation=0.02

#### $47 \quad \mathrm{H}^{\cdot} + \mathrm{SiH}_4 \rightarrow \mathrm{H}_2 + \mathrm{SiH}_3^{\cdot}$

# symmetry used: $C_s$ active space: (6,6)

Table 44: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on geometries in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$H' + SiH_4$	transition state	$H_2 + SiH_3$	$H' + SiH_4$	transition state	$H_2 + SiH_3$
• •		~	· •		●● <
occupation=1.99	occupation=2.00	occupation=1.99	occupation=0.02	occupation=0.03	occupation=0.02
• • • • • • • • • • • • • • • • • • •	occupation=1.96	occupation=1.97	occupation=0.01	occupation=0.01	occupation=0.01
			•		
occupation=1.00	occupation=1.00	occupation=1.00	occupation=0.01	occupation=0.01	occupation=0.01

#### $\mathbf{48} \quad \mathbf{H}^{\,\cdot} + \mathbf{SiH_3NH_2} \rightarrow \mathbf{H_2} + \mathbf{H_2SiNH_2^{\,\cdot}}$

# symmetry used: $C_1$ active space: (6,6)

Table 45: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\text{H'} + \text{H}_3\text{SiNH}_2}{(\text{pre-reaction complex})}$	transition state	$H_2 + H_2 SiNH_2$	$H' + H_3 SiNH_2$	transition state	$H_2 + H_2 SiNH_2^{\cdot}$
` <b>*</b>		•	<b>•</b>		•
occupation=1.98	occupation=2.00	occupation=1.98	occupation=0.01	occupation=0.01	occupation=0.01
occupation=1.97	occupation=1.96	occupation=1.97	occupation=0.02	occupation=0.01	occupation=0.01
			<b>*</b>		
occupation=1.00	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.03	occupation=0.02

### $49 \quad \mathrm{H}^{\,\cdot} + \mathrm{SiH}_2(\mathrm{NH}_2)_2 \rightarrow \mathrm{H}_2 + \mathrm{HSi}(\mathrm{NH}_2)_2^{\,\cdot}$

# symmetry used: $C_1$ active space: (6,6)

Table 46: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\mathrm{H}^{\cdot} + \mathrm{SiH}_{2}(\mathrm{NH}_{2})_{2}}{}_{(\mathrm{pre-reaction \ complex})}$	transition state	$H_2 + SiH(NH_2)_2$	$\frac{\mathrm{H}^{\cdot} + \mathrm{SiH}_{2}(\mathrm{NH}_{2})_{2}}{_{(\mathrm{pre-reaction \ complex})}}$	transition state	$H_2 + SiH(NH_2)_2$
~	• •	° 🥠	~ 🐦		° •
occupation=1.98	occupation=2.00	occupation=1.98	occupation=0.02	occupation=0.01	occupation=0.02
occupation=1.97	occupation=1.96	occupation=1.97	occupation=0.01	occupation=0.01	occupation=0.01
~~ <b>Q</b>			•••		°
occupation=1.00	occupation=1.00	occupation=1.00	occupation=0.02	occupation=0.03	occupation=0.02

#### 50 $\mathrm{H^{\cdot}+SiH(NH_2)_3} \rightarrow \mathrm{H_2+Si(NH_2)_3^{\cdot}}$

# symmetry used: $C_1$ active space: (6,6)

Table 47: The active space used in CASPT2 calculations for the proton transfer reaction. Energies of reactants and products are calculated on the geometry in which molecular fragments are placed on a much larger separation (> 20 Å), that is too large to be suitable for visualisation.

$\frac{\text{H'} + \text{SiH}(\text{NH}_2)_3}{(\text{pre-reaction complex})}$	transition state	$H_2 + Si(NH_2)_3^{\cdot}_{(\text{postreaction complex})}$	$H' + SiH(NH_2)_3$	transition state	$H_2 + Si(NH_2)_3^{\cdot}$
ໍ 🥪	° 🌪		° 🌠		
occupation=1.98	occupation=1.98	occupation=1.98	occupation=0.02	occupation=0.01	_occupation=0.01
occupation=1.00	occupation=1.97	occupation=1.97	occupation=0.01	occupation=0.01	occupation=0.01
ે 🔍 જ	<b>O</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° 🍋		<b>•</b>
occupation=1.97	occupation=1.00	occupation=1.00	occupation=0.01	occupation=0.03	occupation=0.02