Electronic Supplementary Information (ESI)

An approach to the electronic structure of molecular junctions with metal clusters of atomic thickness

Daniel Aranda, Isabel López-Tocón, Juan Soto, Juan C. Otero* and Francisco Avila*

Universidad de Málaga, Andalucía Tech, Facultad de Ciencias, Departamento de Química Física, Unidad Asociada CSIC, 29071-Málaga, Spain. E-mail: jc_otero@uma.es, avila@uma.es

Figure S1 Effect of the inter-cluster distance (d_{MM}) on the M06-HF/LanL2DZ stabilization energy of the bond formed between pyrazine and the non-contact silver cluster in the ground electronic state S₀ (top) of Ag_n-Pz-Ag_n junctions. N-Ag bond lengths of pyrazine linked to the contact (d_{AgC-Pz}) and non-contact $(d_{Pz...AgNC})$ silver clusters versus the intercluster distance (bottom).

Figure S2 Effect of the inter-cluster distance (d_{MM}) on the M06-HF/LanL2DZ stabilization energy of the bond formed between pyrazine and the non-contact silver cluster in the ground electronic state S₀ (top) and on the corresponding vertical energies of the metal-metal (CT_{MM}), metal-molecule (CT_{0,1}) and molecular (S_{1,Pz}) excited states of Ag_n-Pz-Ag_n junctions.

Figure S3 M06-HF/LanL2DZ relative energies of the $CT_{0,1}$ and $S_{1,Pz}$ states referred to the corresponding forward (q=+1) and reverse (q=-1) CT_{MM} polarized states plotted versus the density of charge (q_{eff}=q/n) of the silver clusters in charged Ag_n^q-Pz-Ag_n^{-q} junctions at different inter-cluster distances (d_{MM}).

Figure S4 Relevant Kohn-Sham molecular orbitals involved in the discussed electronic states of the Ag_2 -Pz... Ag_2 junction at an inter-cluster distance of 9.0 Å. Orbitals labelled according to the energies for the whole M_c -Pz... M_{NC} system (left) or for each subsystem: the contact metal (M_c), the molecule (Pz) and the non-contact metal (M_{NC}) (right) (see Table S1).

Figure S5 Relevant Kohn-Sham molecular orbitals involved in the discussed electronic states of the Ag_4 -Pz... Ag_4 junction at an inter-cluster distance of 9.0 Å. Orbitals labelled according to the energies for the whole M_c -Pz... M_{NC} system (left) or for each subsystem: the contact metal (M_c), the molecule (Pz) and the non-contact metal (M_{NC}) (right) (see Table S1).

Figure S6 Relevant Kohn-Sham molecular orbitals involved in the discussed electronic states of the Ag₆-Pz...Ag₆ junction at an inter-cluster distance of 9.0 Å. Orbitals labelled according to the energies for the whole M_c -Pz... M_{NC} system (left) or for each subsystem: the contact metal (M_c), the molecule (Pz) and the non-contact metal (M_{NC}) (right) (see Table S1).

Figure S7 Relevant Kohn-Sham molecular orbitals involved in the discussed electronic states of the Ag₈-Pz...Ag₈ junction at an inter-cluster distance of 9.0 Å. Orbitals labelled according to the energies for the whole M_{C} -Pz... M_{NC} system (left) or for each subsystem: the contact metal (M_{C}), the molecule (Pz) and the non-contact metal (M_{NC}) (right) (see Table S1).

	M _C -AM _{NC}	0	V.r.d
n ⁻		Coeff.	VE
2	$HOMO(M_c) \rightarrow LUMO(M_{NC})$	0.66	3.85
4	$HOMO(M_c) \rightarrow LUMO(M_{NC})$	0.68	3.26
6	$HOMO(M_c) \rightarrow LUMO(M_{NC})$	0.55	2.92
	$HOMO-2(M_{NC}) \rightarrow LUMO(M_{NC})$	-0.41	
8	$HOMO(M_c) \rightarrow LUMO(M_{NC})$	0.67	2.75
CT _{MMR} : M _C ⁻ -AM _{NC} ⁺			
n″	Configurations ^b	Coeff. ^c	VE ^d
2	$HOMO(M_{NC}) \rightarrow LUMO(M_{C})$	0.50	5.42
	$HOMO(M_{NC}) \rightarrow Rydberg(M_{NC}; 6s)$	-0.37	
4	$HOMO(M_{NC}) \rightarrow LUMO(M_{C})$	0.68	4.40
6	$HOMO(M_{NC}) \rightarrow LUMO(M_{C})$	0.67	3.84
8	$HOMO(M_{NC}) \rightarrow LUMO(M_{C})$	0.69	3.52
CT _{0F} : M _C ⁺ -A ⁻ M _{NC}			
n ^a	Configuration ^b	Coeff. ^c	VE ^d
2	HOMO(M _c) \rightarrow LUMO(Pz; π^* , b ₁)	0.68	2.85
4	$HOMO(M_c) \rightarrow LUMO(Pz; \pi^*, b_1)$	0.61	2.88
	HOMO-1(M _c) \rightarrow LUMO(Pz; π^* , b ₁)	-0.29	
6	HOMO(M _c) \rightarrow LUMO(Pz; π^* , b ₁)	0.55	2.92
	HOMO-1(M _c) \rightarrow LUMO(Pz; π^* , b ₁)	-0.36	
8	$HOMO(M_c) \rightarrow LUMO(Pz; \pi^*, b_1)$	0.49	2.94
	HOMO-1(M _c) \rightarrow LUMO(Pz; π^* , b ₁)	0.38	
$CT_{0R}: M_{C}-A \dots M_{NC}$			
n"	Configurations	Coeff."	VE"
2	$HOMO(M_{NC}) \rightarrow LUMO(Pz; \pi^*, b_1)$	0.64	4.21
4	$HOMO(M_{NC}) \rightarrow LUMO(Pz; \pi^*, b_1)$	0.48	4.04
	$HOMO(M_{NC}) \rightarrow LUMO+5(M_{NC}; 5p, b_1)$	0.30	
	HOMO-1(Pz; n, a ₁) \rightarrow LUMO(Pz; π^* , b ₁)	-0.26	
6	$HOMO(M_{NC}) \rightarrow LUMO(Pz; \pi^*, b_1)$	0.51	4.00
	HOMO-1(Pz; n, a ₁) \rightarrow LUMO(Pz; π^* , b ₁)	-0.32	
	HOMO-1(M_{NC}) \rightarrow LUMO(Pz; π^* , b_1)	0.27	
8	$HOMO(M_{NC}) \rightarrow LUMO(Pz; \pi^*, b_1)$	0.39	3.98
	HOMO-1(Pz; n, a_1) \rightarrow LUMO(Pz; π^* , b_1)	0.28	

Table S1 M06-HF/LanL2DZ vertical energies (VE/eV) and wave functions for CT_{MM} metal-tometal and CT_0 metal-to-molecule forward and reverse charge transfer states of Ag_n -Pz- Ag_n junctions (n=2,4,6 and 8) at 9.0 Å inter-cluster distance (d_{MM}).

^{*a*}Number of silver atoms of each silver cluster; ^{*b*}Configurations with weights larger than 7%. Molecular orbitals are labelled for the contact metal (M_c), the molecule (Pz) and the non-contact metal (M_{NC}) subsystems (see Figs. S4-S7); ^{*c*}Coefficient of the corresponding configuration; ^{*d*}Vertical excitation energies (eV) at S₀ geometries.