On the Multi-Reference Nature of Plutonium Oxides: PuO_2^{2+} , PuO_2 , PuO_3 and $PuO_2(OH)_2$

Katharina Boguslawski,^{*a,b} Florent Réal,^c Paweł Tecmer,^{*a} Corinne Duperrouzel,^{c,d} André Severo Pereira Gomes,^c Örs Legeza,^e Paul W. Ayers^d, and Valérie Vallet^{*c}

^a Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland; E-mail: k.boguslawski@fizyka.umk.pl, ptecmer@fizyka.umk.pl

 ^b Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland ^c Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France ^d Department of Chemistry and Chemical Biology, McMaster University, Hamilton, 1280 Main Street West, L8S 4M1, Canada

^e Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary

Supporting Information

1 XYZ Coordinates in Angstroms

1.1 linear PuO₂

Pu	0.0000000000000	0.0000000000000	0.0000000000000
Ο	0.00000000000000000000000000000000000	0.00000000000000000000000000000000000	1.814000000000
Ο	0.0000000000000	0.0000000000000	-1.814000000000

1.2 linear PuO_2^{2+}

Pu	0.0000000000000	0.0000000000000	0.0000000000000
Ο	0.00000000000000000000000000000000000	0.00000000000000000000000000000000000	1.711000000000
Ο	0.000000000000	0.000000000000	-1.711000000000

1.3 bent PuO_2^{2+}

Pu	0.00000000000000000000000000000000000	0.0000000000000	0.000000000000
Ο	-0.118952247373	0.0000000000000	1.762991594661
Ο	-0.118952247373	0.000000000000	-1.762991594661

1.4 PuO₃

Pu	0.00000000000000000000000000000000000	0.0000000000000	0.0000000000000
Ο	1.934000000000	0.0000000000000	0.0000000000000
Ο	-0.118952247373	0.0000000000000	1.762991594661
Ο	-0.118952247373	0.0000000000000	-1.762991594661

1.5 PuO₂(OH)₂

0.00000000000000000000000000000000000	0.00000000000000000000000000000000000	1.000000000000000000000000000000000000
1.743451431370	0.00000000000000000000000000000000000	0.926500976503
-1.743451431370	0.00000000000000000000000000000000000	0.926500976503
0.00000000000000000000000000000000000	1.692384295153	2.243316290217
0.00000000000000000000000000000000000	-1.692384295153	2.243316290217
0.779782242822	2.098494984571	2.631304385035
-0.779782242822	-2.098494984571	2.631304385035
	$\begin{array}{c} 0.00000000000\\ 1.743451431370\\ -1.743451431370\\ 0.00000000000\\ 0.0000000000\\ 0.779782242822\\ -0.779782242822\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

2 DMRG convergence and occupation numbers

Table S1: Ground state energies of all investigated plutonium oxides. The convergence of DMRG calculations with respect to the number of renormalized system states (indicated in brackets) is summarized. The number of block states was kept fixed for m = 256 and m = 512, while the DBSS procedure was used for larger m. [1024]: $m_{\min} = 512$, $m_{init} = m_{\max} = 1024$, the threshold for the quantum information loss was set to 10^{-5} . [2048]: $m_{\min} = 512$, $m_{init} = 1024$, $m_{\max} = 2048$, the threshold for the quantum information loss was set to 10^{-5} .

	E/Hartree									
Molecule	PuO_2 PuO_2^{2+} (linear) PuO_2^{2+} (bent) PuO_3 $PuO_2(OF)$									
DMRG										
FV-CAS										
[256]	—	—	—	_	-852.858 6					
[512]	-701.966 0	-701.224 8	-701.256 0	-776.642 0	-852.862 5					
[1024]	-701.967 1	-701.226 4	-701.258 8	-776.642 4	-852.864 4					
[2048]	-701.967 3	-701.227 1	-701.260 3	-776.642 6	-852.865 5					
optCAS										
[256]	_	—	_	-776.611 5	-852.815 7					
[512]	-701.925 8	-701.202 3	$-701.179 \ 9$	-776.611 5	-852.816 9					
[1024]	-701.925 9	-701.202 6	$-701.180\ 2$	_	-852.817 4					

Table S2: Occupation numbers of each active space orbital with index i for the converged DMRG wavefunctions and investigated plutonium oxides. The orbitals i are ordered as mentioned in the main manuscript.

PuO ₂		PuO_2^{2+} (linear)			PuO_2^{2+} (bent)			PuO ₃				PuO ₂ (OH) ₂							
FV	-CAS	opt	tCAS	FV-CAS optCAS FV-CAS optCAS		CAS	FV-CAS optCAS			FV-CAS		optCAS							
i	$n_{ m occ}$	i	$n_{ m occ}$	i	$n_{ m occ}$	i	$n_{ m occ}$	$\mid i$	$n_{ m occ}$	i	$n_{ m occ}$	i	$n_{ m occ}$	i	$n_{ m occ}$	i	$n_{ m occ}$	i	$n_{\rm occ}$
1	2.00	1	0.02	1	2.00	1	1.97	1	2.00	1	1.89	1	2.00	1	2.00	1	2.00	1	1.97
2	2.00	2	1.99	2	2.00	2	0.00	2	1.99	2	1.96	2	2.00	2	1.98	2	2.00	2	1.98
3	1.99	3	1.98	3	1.98	3	1.91	3	1.99	3	0.50	3	2.00	3	0.24	3	2.00	3	2.00
4	0.02	4	0.99	4	0.00	4	0.50	4	1.89	4	0.12	4	2.00	4	0.00	4	2.00	4	1.99
5	0.00	5	0.07	5	0.00	5	0.10	5	1.95	5	1.89	5	1.99	5	1.98	5	2.00	5	0.47
6	0.00	6	1.99	6	0.00	6	1.91	6	0.50	6	0.12	6	2.00	6	1.99	6	1.99	6	0.54
7	1.99	7	1.98	7	1.99	7	0.50	7	0.13	7	0.50	7	1.98	7	0.78	7	1.97	7	0.00
8	1.98	8	0.99	8	1.91	8	0.10	8	0.01	8	1.90	8	0.22	8	0.00	8	1.98	8	0.00
9	0.99	9	0.07	9	0.49	9	1.92	9	0.01	9	1.96	9	0.00	9	0.02	9	1.99	9	0.02
10	0.07	10	1.93	10	0.10	10	0.51		0.00	10	0.51	10	0.01	10	1.98	10	1.99	10	0.02
11	1.99	11	0.95		1.99		0.09		1.99	11	0.13		0.01		1.97		0.47	11	1.97
12	1.98	12		12	1.91	12	1.96	12	1.89	12	0.03	12	1.99	12	0.26	12	0.55	12	1.98
13	0.99	13	1.99	13	0.52	13	0.03		0.50	13	1.95	13	1.98	13	0.01	13	0.01	13	1.97
14	0.07	14	0.02	14	0.10	14	1.90	14	0.13	14	0.01	14	1.99	14	0.78	14	0.00	14	2.00
10	0.01	10	1.99	10	1.00	10	0.05	10	0.01	15	0.05	10	0.01			10	0.03	10	2.00
10	2.00	17	0.02	17	1.99	10	0.51		1.00			10	0.01			17	0.03	17	0.30
18	1.99	11	0.90	18	1.99				1.99			18	2.00			18	0.00	18	0.45
19	0.96			19	0.50			19	1.35			10	2.00			19	2.00	19	0.00
20	0.07			20	0.00			20	1.05			20	1 99			20	$\frac{2.00}{2.00}$	20	0.01
20	1 99			21	1.96			21	0.51			20	1.00			21	$\frac{2.00}{2.00}$	20	0.01
22	0.02			22	0.03			22	0.13			22	1.96			22	1.99	22	0.04
23	1.99			23	1.96			23	0.04			23	0.25			23	1.99		0.01
24	0.02			24	0.03			24	1.95			24	0.01			24	1.96		
25	0.96			25	0.52			25	0.51			25	2.00			25	1.97		
								26	0.04			26	0.81			26	1.96		
																27	1.99		
																28	1.99		
																29	0.58		
																30	0.44		
																31	0.00		
																32	0.02		
																33	0.01		
																34	0.03		
																35	0.05		

Table S3: DMRG orbital ordering used in all calculations.

Molecule	FV-CAS
PuO ₂	$2a_{g} 5a_{g} 6a_{g} 3a_{g} 1a_{g} 5b_{1u} 3b_{1u} 2b_{3u} 2b_{2u} 4b_{3u} 4b_{2u} 1a_{u} 4b_{1u} 2b_{1u} 1b_{3g} 1b_{2g} 2b_{3g} 2b_{2g} 1b_{1u} 3b_{2u} 3b_{3u} 4a_{g} 1b_{2u} 1b_{3u} 1b_{1g}$
PuO_2^{2+} (linear)	$1b_{1g} \ 1b_{1u} \ 3b_{2u} \ 3b_{3u} \ 1a_u \ 4b_{1u} \ 2b_{2g} \ 2b_{3g} \ 1b_{2g} \ 1b_{3g} \ 2b_{1u} \ 2b_{2u} \ 4b_{2u} \ 2b_{3u} \ 4b_{3u} \ 1b_{2u} \ 1b_{3u} \ 3b_{1u} \ 5b_{1u} \ 5a_g \ 2a_g \ 3a_g \ 4a_g \ 1a_g \ 6a_g$
PuO_2^{2+} (bent)	$1a_1 \ 9a_1 \ 5b_1 \ 8a_1 \ 2a_1 \ 3a_1 \ 1b_1 \ 2b_2 \ 10a_1 \ 6a_1 \ 3b_1 \ 5b_2 \ 2a_2 \ 5a_1 \ 3b_2 \ 6b_2 \ 3a_2 \ 7a_1 \ 4a_1 \ 7b_2 \ 4b_1 \ 2b_1 \ 4b_2 \ 1a_2 \ 1b_2 \ 6b_1$
PuO_3	$1b_2 \ 1a_2 \ 5b_1 \ 11a_1 \ 3b_2 \ 2b_2 \ 2b_1 \ 5a_1 \ 3b_1 \ 6a_1 \ 6b_1 \ 7b_2 \ 4b_2 \ 9a_1 \ 5b_2 \ 10a_1 \ 7a_1 \ 1b_1 \ 6b_2 \ 4b_1 \ 2a_2 \ 8a_1 \ 4a_1 \ 2a_1 \ 1a_1 \ 3a_1$
$PuO_2(OH)_2$	$1a\ 2a\ 3a\ 4a\ 5a\ 6a\ 9a\ 10a\ 15a\ 7a\ 11a\ 12a\ 16a\ 8a\ 13a\ 14a\ 17a\ 18a\ 4b\ 10b\ 9b\ 5b\ 7b\ 8b\ 6b\ 11b\ 12b\ 17b\ 16b\ 14b\ 15b\ 13b\ 1b\ 2b\ 3b$
Molecule	optCAS
PuO ₂	$3b_{3u} \ 3b_{2u} \ 1a_u \ 4b_{1u} \ 4b_{3u} \ 4b_{2u} \ 2b_{2u} \ 2b_{3u} \ 5b_{1u} \ 3b_{1u} \ 1b_{3g} \ 2b_{3g} \ 2b_{2g} \ 1b_{2g} \ 1b_{3u} \ 1b_{2u} \ 4a_g$
PuO_2^{2+} (linear)	$3b_{3u} \ 3b_{2u} \ 4b_{1u} \ 1a_u \ 2b_{2u} \ 2b_{3u} \ 4b_{2u} \ 4b_{3u} \ 3b_{1u} \ 2b_{3g} \ 2b_{2g} \ 1b_{3g} \ 1b_{2g} \ 5b_{1u} \ 3a_g \ 4a_g$
PuO_2^{2+} (bent)	$4b_1 \ 6a_1 \ 2a_2 \ 5b_2 \ 3b_2 \ 6b_2 \ 2b_1 \ 4a_1 \ 3b_1 \ 7a_1 \ 5a_1 \ 1a_2 \ 4b_2 \ 3a_2 \ 7b_2$
PuO_3	$5b_1 \ 7b_2 \ 3b_1 \ 4b_2 \ 2b_1 \ 5b_2 \ 6b_1 \ 7a_1 \ 6b_2 \ 4b_1 \ 2a_2 \ 8a_1 \ 6a_1 \ 9a_1$
$PuO_2(OH)_2$	9a 10a 16a 17b 14b 16b 6b 8a 7a 12a 11a 12b 11b 8b 15a 7b 15b 9b 13a 10b 13b 14a