Supporting Information

Constructing B and N separate codoped carbon nanocapsules wrapped Fe/Fe₃C for oxygen reduction reaction with high current density

He Feng, Lei Wang,* Lu Zhao, Chungui Tian, Peng Yu and Honggang Fu*

Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China; E-mail: fuhg@vip.sina.com

samples	The dosage	The decage of	The dosage of	Pyrolysed	
	of melamine	H ₂ BO ₂ (σ)	$Fe(NO_3)_3 \bullet 9H_2O$	temperatuare (°C)	
	(g)	113DO3 (g)	(g)		
NGFe-800	3	0	3	800	
B ₁ NGFe ₂ -800	3	0.4	3	800	
B ₂ NGFe ₂ -800	3	0.6	3	800	
B ₃ NGFe ₂ -800	3	0.8	3	800	
BNC-800	3	0.6	0	800	
B ₂ NGFe ₁ -800	3	0.6	2	800	
B ₂ NGFe ₃ -800	3	0.6	4	800	
B ₂ NGFe ₂ -700	3	0.6	3	700	
B ₂ NGFe ₂ -900	3	0.6	3	900	

Table S1. The detailed experimental parameters for all the compared samples.

Fig. S1 XRD patterns of (a) B₂NGFe₂-800-Fe and (b) the BNC-800 composites.

Fig. S2 (a) XRD patterns and (b) Raman spectra of all the compared samples synthesized from different dosages of boric acid and iron nitrate, and different pyrolysed temperatures.

		-	-				
samples	В	С	Ν	Ο	Fe	B/N	B/Fe
	content	content	content	content	content		
	(at.%)	(at.%)	(at.%)	(at.%)	(at.%)		
B ₂ NGFe ₂ -800	1.35	90.11	2.77	4.87	0.89	0.49	1.5
B ₁ NGFe ₂ -800	1.00	86.34	5.44	6.77	0.44	0.18	2.3
B ₃ NGFe ₂ -800	9.97	69.59	11.55	8.64	0.26	0.86	38
B ₂ NGFe ₁ -800	1.62	87.30	4.41	5.90	0.78	0.37	2.1
B ₂ NGFe ₃ -800	1.84	87.36	5.83	3.91	1.05	0.32	1.8
B ₂ NGFe ₂ -700	2.62	78.52	10.06	7.99	0.80	0.26	3.3
B ₂ NGFe ₂ -900	10.84	66.71	11.40	10.79	0.26	0.95	42
NGFe-800	0.00	90.17	3.23	6.04	0.56	0	0

Table S2. The high-resolution XPS spectrum analytic results of B1s, N1s and Fe2p for B_2NGFe_2 -800 and other compared samples.

Fig. S3 (a) Survey XPS spectrum, (d) N1s and (g) Fe2p XPS spectra of NGFe-800 composite; (b) B1s, (e) N1s and (h) Fe2p XPS spectra of B_1NGFe_2 -800 composite; Survey XPS spectrum, (c) B1s, (f) N1s and (i) Fe2p XPS spectra of B_3NGFe_2 -800 composite.

Fig. S4 (a) B1s, (c) N1s and (e) Fe2p XPS spectra of B₂NGFe₃-800 composite; (b) B1s, (d) N1s and (f) Fe2p XPS spectra of B₂NGFe₁-800 composite.

Fig. S5TGA curves of B2NGFe1-800, B2NGFe2-800 and B2NGFe3-800 composites.

Fig. S6 TEM and HRTEM images of B₂NGFe₂-800-Fe composite without treating by HCl.

Fig. S7 (a) RRDE voltammetric response in O_2 -saturated 0.1 M KOH electrolyte at a scan rate of 5 mV s⁻¹ and (b) electrochemical activity given as the kinetic current density (JK) at 0.6 V for compared electrodes; The electrode rotation rate was 1600 rpm, and the Pt ring electrode was polarized at 1.2 V.

Fig. S8 RRDE curves of Pt/C on a RRDE in an O_2 -saturated 0.1 M KOH electrolyte with various rotating speeds at scan rates of 5 mV s⁻¹.

Table 55. Current densities of B ₂ (vol e ₂ -500 and 1 / C for Oriel at different potentials.									
Current density	0.1V	0.2V	0.3V	0.4V	0.5V	0.6V	0.7V	0.8V	0.9V
(m A cm ⁻²)									
B ₂ NGFe ₂ -800	4.8	4.9	4.9	4.9	4.9	4.8	4.6	2.9	0.5
Pt/C	4.2	4.2	4.2	4.2	4.2	4.1	3.7	2.6	0.4

Table S3. Current densities of B_2NGFe_2 -800 and Pt/C for ORR at different potentials.

	Loading			E Onset	T (A 2)	Ref
Catalysts	(mg cm ⁻²)	electrolyte	$E_{1/2}(V)$	(V)	$J_{\rm K}$ (mA cm ⁻²)	
B ₂ NGFe ₂ -800	0.3 mg cm ⁻²	0.1M KOH	0.83	0.98	72.7	This
						work
Fe@C-FeNCs	0.7 mg cm ⁻²	0.1M KOH	0.899	1.0	41.6 A/g at	1
					0.80 V	
Fe-N/C-800	0.1 mg cm ⁻²	0.1M KOH	0.809	0.923	Not	2
					mentioned	
Fe ₃ C/C hollow	0.6 mg cm ⁻²	0.1M KOH	0.83	1.05	Not	3
spheres					mentioned	
Fe@N-C/SiC@N-C	1.0 mg cm^{-2}	0.1M KOH	0.84	0.88	Not	4
					mentioned	
Fe-N-Doped	0.1 mg cm ⁻²	0.1M KOH	0.83	0.94	18.3 mA cm^{-2}	5
Carbon Capsules						
N-doped	0.08 mg cm ⁻²	0.1M KOH	Not	0.98	Not	6
mesoporous			mentioned		mentioned	
carbons with a trace						
amount of						
Fe						
B and N isolate-	0.2 mg cm ⁻²	0.1M KOH	Not	0.95	11.9 mA	7
doped graphitic			mentioned		cm ⁻² @0.7V	
nanosheets						

Table S4. The comparison of ORR performance of B_2NGFe_2 -800 with other Pt-free ORR electrocatalysts (vs. RHE)

References in here:

W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan. J. Am. Chem. Soc., 2016, 138, 3570–3578.
L. Lin, Q. Zhu, A.-W. Xu. J. Am. Chem. Soc., 2014, 136, 11027–11033.

3. Y Hu, J.O. Jensen, W Zhang, Lars N. Cleemann, W Xing, Niels J. Bjerrum, Q. Li. *Angew. Chem. Int. Ed.*, **2014**, *53*, 3675–3679.

4. J. Li, J. W, D. Gao, X. Li, S. M, G. Wang, X. Bao. Catal. Sci. Technol., 2016, 6, 2949–2954.

5. G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla, M. Titirici. *ACS Nano*, **2016**, *10*, 5922–5932.

6. W. Niu, L. Li, X. Liu, N Wang, J Liu, W. Zhou, Z. Tang, S. Chen. J. Am. Chem. Soc., 2015, 137, 5555–5562.

7. L. Wang, P. Yu, L. Zhao, C. Tian, D. Zhao, W Zhou, J Yin, R. Wang, H. Fu. Sci. Rep., 2014, 4, 5184.