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I.

Illustrative examples of the exchange reaction
a. Simple example

The first example is the reaction between B (parent oligomer) and F)y (nucleophilic attacker)

to form By, (ejection product) and By, (growth product).

Ejection of P, from parent oligomers P
As shown in Scheme S1, the parent oligomer in this case has two possible sequences (C;™ =2),
but only one of them leads to B} by the ejection reaction.
0 Nk 0 0
Pio,jo + R",s P(io—i—1)+r,(jo—j)+s+l + I)i,j

0 Nk 0 0
= B +Ry——=>hR5+h,

To calculate the possibility of forming By by the ejection reaction, we first count the numbers

of ester and amide bonds in the two products that are originated from the parent oligomer. The
ejection product does not have any ester or amide bond and it can only be arranged in one way
(Cy™* =1). The other product, P, , has two amide bonds, but one of them is made from the
exchange reaction. Only one amide bond is from the parent oligomer, so this segment has one

(1-0-1)+(1-0)
Cl—O

possible sequence ( =1). Therefore, only one sequence of the parent oligomer allows

this reaction to happen. Averagely speaking, half of the ejection reaction produces Fy .
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Scheme S1  The ejection formation of By from BS bya B).



Growth of P’ with new amide bond from P

In the second case, we consider the growth rate of the oligomer P, with a newly attached amide
bond for the same reaction (Scheme S2).

X N k& X 0
Eo,jo + ])r,s E,j + Bo—(i—r)—l,jo—(j—s—l)

0 Nk 0 0
= R,l "’Po,o ’Po,z "H%,o

Again, we need to calculate the numbers of ester and amide bonds in the two products that belong
to the parent oligomer. The product with the nucleophile has two amide bonds, but the segment

from the parent oligomer has only one amide bond, so it has one possible arrangement
(G0 =1)). Because one amide bond of the parent oligomer has been used to the product
with the nucleophile and its ester bond has been consumed by the exchange reaction, the ejection

product contains zero linkage and has only one sequence ( CI' {* % ==

!'=1). Therefore, only
1-(2-0-1) . >
half of the reaction from Plf and PO{‘{) yields 130?2.
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Scheme S2  The growth of B, from B bya B).

b. Advanced example

The second example is a more complex case. It is the reaction between P’ (parent oligomer)

and P} (nucleophilic attacker) to form Py} (ejection product) and BS (growth product).

Ejection of P, from parent oligomers P,



As shown in Scheme S3, the parent oligomer in this case has six possible sequences (C,"> =6),
but only two of them can form B, by the exchange reaction.

P°.

losJo

0 Nk 0 0
=P, +h,——h+EL

N k. O [
+ Pr,s I)(io—i—l)+r,(ja—‘j)+s+1 + B,j

To calculate the possibility of forming P} by the ejection reaction, we count the numbers of
ester and amide bonds in the two products that are originated from the parent oligomer. The
ejection product has one amide bond and it can only be arranged in one way (C,"' =1). The other
product, Plg, has one ester bond and three amide bonds, but one of amide is made from the
exchange reaction and another amide bond comes for the nucleophilic attacker. Only one ester
bond and one amide bond are from the parent oligomer and this segment has two possible

sequences (Cy," "™ =2)). Therefore, two sequences of the parent oligomer allow this reaction

to happen. Averagely speaking, one-third of the ejection reaction produces B .
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Scheme S3  The ejection formation of B} from P’ bya B).



Growth of PS with new amide bond from P,

Here, we consider the growth rate of the oligomer RS with a newly attached amide bond for the

same reaction (Scheme S4).
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Here, the product with the nucleophile has one ester bond and three amide bonds, but the segment

from the parent oligomer has only one ester and one amide bond. Therefore, it has two possible
arrangements ( Cy """ =2). Because two bonds of the parent oligomer have been used in the
growth product and one ester bond is consumed by the exchange reaction, the ejection product has

one amide bond and one possible sequence (CY {52177 =1). Therefore, only one-third of

the reaction from P, and B yields PS.
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Scheme S4  The growth of RS from P bya B).



II.  The design of the closed reactor

o] /o Unit: mm B

< ,é)ls

Fig. S1 The closed reactor. (A) The oven used to perform the reaction. (B) The blue print of the
closed tube reactor.



III. HPLC-UV/MS analysis
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Fig. S2 HPLC-UV/MS analysis of the V/LA depsipeptide mixture. The sample was prepared
from 33.34 mM valine and 100 mM lactic acid, 300 pl solution. The solution was dried in the
closed reactor for 24 hours.

Table S1. UV response factor at 210 nm

Compound UV response factor, k [pmole/mAU*min]
1LA 2.64x10”
2LA 8.29x10°¢
3LA 5.53x10°®
4LA 4.15x10°¢
SLA 3.32x10°
1V-1LA 8.29x107°
1LA-1V 2.48x10°¢
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Fig. S3 Mass spectra of species after HPLC separation.



Iv.

a. Ester hydrolysis
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Fig. S4 Monomer and oligomer distributions versus time profile in the hydrolysis stage. The
colors: purple (95 °C), red (85 °C), green (75 °C)
and blue (65 °C). Solid lines are the model predictions. The experimental data points are

reaction temperatures are denoted as different

Kinetic of ester hydrolysis and water evaporation
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Fig. S§ Arrhenius plot of the hydrolysis rate constants evaluated from the lactic acid hydrolysis

experiments.



b. Water evaporation

Evaporation of water
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Fig. S6 The amount of water left in the drying side of the reaction at different temperatures are

denoted as different colors: purple (95 °C), red (85 °C), green (75 °C) and blue (65 °C). Solid lines

are the model predictions. The experimental data points are represented by [, ¢, v and X
symbols, respectively.
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Fig. S7 Arrhenius plot of the water evaporation rate constants.
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V. Kinetics of V/LA copolymerization with different monomer ratios
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Fig. S8 Experimental results and model prediction for low valine loading. The results for
different V/LA ratios are denoted as different colors: blue (5/100), green (7.5/100) and red (10/100).
Solid lines are the model predictions. The experimental data points are represented by the same

colors and by the X, v and < symbols, respectively. All simulations were calculated by using
the rate constants obtained from the 10/100 experiment.
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Fig. S9 Experimental results and model prediction for the 0/100 and 5/100 experiment. The
results for different V/LA ratios are denoted as different colors: black (0/100) and blue (5/100).
Solid lines are the model predictions. The experimental data points are represented by the same
colors and by the ¢ and X symbols, respectively. Optimized rate constants from the data was
used for the model prediction of the 0/100 experiment. The simulation for 5/100 ratio experiment
was calculated by using the rate constants obtained from the 10/100 experiment.
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Fig. S10 Experimental results and model prediction for high valine loading. The results for
different V/LA ratios are denoted as different colors: red (10/100), purple (20/100) and orange
(50/100). Solid lines are the model predictions. The experimental data points are represented by

the same colors and by the ¢, v and [ symbols, respectively. All simulations were calculated
by using the rate constants obtained from the 10/100 experiment.
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VI.  Flux analysis
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Fig. S11 Flux analysis for the reactions in 6 hours. The average fluxes (umole/hr) were calculated
from the simulation of 6 hr reaction of 10/100 V/LA mixture at 85 °C. The width of each arrow
indicates the relative magnitudes of each flux. Only fluxes of forward reactions are included
because the fluxes of hydrolysis and reverse reactions are negligible in the dry state.
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VIIL

Nomenclature
2 Hydroxy-terminated oligomers with 7 ester bonds and j amide bonds (pmole)
P Amine-terminated oligomers with i ester bonds and j amide bonds (umole)
System volume (uL)
Water (umole)
i Rate constant for the esterification between two hydroxy-terminated oligomers
11
(L-mol!-h")
Rate constant for the esterification between hydroxy-terminated and amine-
k12 . . 1l
terminated oligomers (L-mol™-h™)
kn1 Rate constant for the hydrolysis of ester (L-mol™!-h)
ke Rate constant for the exchange reaction (L-mol!-h!)
Kpra Rate constant for the evaporation of lactic acid (umole-cm™-h!)
Kpw Rate constant for the evaporation of water (umole-cm™-h!)
Rvw Evaporation of water (umole-h™)
N,z Flux of water (umole-h!'-cm)
z1 Liquid height (cm)
z2 Length of tube inside oven (cm)
Xw Liquid mole fraction of water
Gas mole fraction water at (1) liquid-gas interface and (2) the top of high
Yl Yw2 temperature region
S4 Cross-section area (cm?)
TH Drying temperature (°C)
Poair Partial pressure of air (kPa)
P, Vapor pressure of water (kPa)
Ry14 Evaporation rate of lactic acid (umole-h™")
X4 Mole fraction of lactic acid in liquid
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