Supporting Information: Interfacial charge separation and photovoltaic efficiency in Fe(II)-

carbene sensitized solar cells

Mariachiara Pastore^{*a}, Thibaut Duchanois,^b Li Liu,^c Antonio Monari,^a Xavier Assfeld,^a Stefan Haacke,^c Philippe C. Gros^{*b}

^a Université de Lorraine & CNRS, SRSMC, TMS, , Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.

^b Université de Lorraine & CNRS, SRSMC, HecRIn, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.

^c Université de Strasbourg & CNRS, IPCMS & Labex NIE, Rue du Loess, 67034 Strasbourg Cedex, France.

Synthesis of heteroleptic complexes

The access to complexes C5, C6 and C7 required the synthesis of precursors L1, L2, L3 and L4. $L1^1$ and $L2^2$ were prepared following reported procedures. The first step towards L3 and L4 was the Ullmann synthesis of arylimidazoles 1^3 and $2.^4$

Synthesis of ligands

Synthesis of ligand L3

A mixture of 2,6-dibromopyridine-4-carboxylic acid (0.5 g, 1.7 mmol) and **1** (1 mL, 12.4 mmol) was stirred at 150 °C under Argon overnight. After cooling, Et₂O (5 mL) was added and the resultant precipitate was filtered. The crude product was dissolved in a minimum amount of water and a saturated solution of KPF₆ in water (10 mL) was added. The solution was finally acidified to pH=2 using diluted HNO₃. Filtered, washing with water and drying under vacuum afforded **L2** (0.95g, 65%) as an off-white solid. ¹H NMR (200 MHz, CD₃CN): $\delta = 9.95$ (s, 2 H), 8.62 (s, 2H), 8.56 (s, 2H), 8.02 (s, 2H), 7.74 (d, J = 9.2 Hz, 4H), 7.23 (d, J = 9.2 Hz, 4H), 3.92 (s, 6H) ppm. HRMS (ESI) calcd for C₂₆H₂₃N₅O₄P₂F₁₂ m/z = 234.5870 [M - 2 PF6]²⁺. Found: 234.5910.

Synthesis of ligand L4

The procedure used for L3 was repeated using 2,6-dibromopyridine-4-carboxylic acid (0.25 g, 0.85 mmol) and 2 (0.53 g, 1.7 mmol) affording L4 as a white powder (0.61 g, 45%). ¹H NMR (200 MHz, CD₃CN): δ = 10.8 (s, 2 H), 9.1 (s, 2H), 8.8 (s, 2H), 8.5 (s, 2H), 7.84 (d, *J* = 8.8 Hz, 4H), 7.4 (m, 8H), 7.19 (m, 16H) ppm. HRMS (ESI) calcd pour C₄₈H₃₇N₇O₂P₂F₁₂ m/z = 371,6499 [M – 2 PF6]²⁺. Found: 371,6526.

Synthesis of heteroleptic complexes C5, C6 and C7

Synthesis of C5

L1 (92 mg, 0.17 mmol), L2 (100 mg, 0.17 mmol) and anhydrous $FeCl_2$ (22 mg, 0.17 mmol) were dissolved in anhydrous DMF (3 mL), *t*BuOK (130 mg, 1 mmol) was then added and the mixture was stirred for 10 min at 20°C. A saturated solution of KPF₆ in water (10 mL) was then added. The solution was finally acidified to pH=2 using diluted HNO₃. The dark red precipitate was collected by filtration and purified by column chromatography on silicagel using a mixture of Acetone/water/ KNO_{3 (sat)} = 10/3/1. The dark orange fraction was collected

and acidified to pH=2 using diluted HNO₃ leading to a dark red solution. A saturated solution of KPF₆ in water (10 mL) was then added. The acetone was evaporated and after filtration, washing with water and drying under vacuum C5 was obtained as a dark red solid (31 mg, 20 %). ¹H NMR (200 MHz, CD₃CN): δ = 8.29 (s, 2H), 8.26 (t, *J* = 8.2 Hz, 1H), 8.18 (d, *J* = 2.2 Hz, 2H), 8.04 (d, *J* = 2.4 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 2.2 Hz, 2H), 7.01 (d, *J* = 2.2 Hz, 2H), 2.55 (s, 6H), 2.50 (s, 6H) ppm. ¹³C RMN (100 MHz, CD₃CN): δ = 199.5, 199.3, 164.5, 154.7, 153.6, 139.2, 138.8, 126.7, 126.6, 116.7, 116.4, 105.6, 104.5, 34.6, 34.5 ppm. HRMS (ESI) Calcd for C₂₇H₂₆FeN₁₀O₂P₂F₁₂ m/z = 289.0789 [M – 2 PF6]²⁺. Found: 289.0793.

Synthesis of C6

The procedure used for **C5** was repeated using **L1** (60 mg, 0.13 mmol), **L3** (100 mg, 0.13 mmol), FeCl₂ (17 mg, 0.13 mmol) and *t*BuOK (130 mg, 1 mmol) affording **C6** as a dark red solid (25 mg, 15 %). ¹H NMR (400Mz, CD₃CN): $\delta = 8.44$ (s, 2H), 8.31 (d, J = 2.4 Hz, 2H), 7.84 (d, J = 2.1 Hz, 2H), 7.52 (t, J = 8.2 Hz, 1H), 7.10 (d, J = 2.3 Hz, 2H), 7.05 (d, J = 2.1 Hz, 2H), 6.89 (d, J = 8.1 Hz, 2H), 6.47 (d, J = 8.7 Hz, 4H), 6.25 (d, J = 8.9 Hz, 4H), 3.76 (s, 6H), 2.6 (s, 6H) ppm. HRMS (ESI) Calcd for C₃₉H₃₄FeN₁₀O₄P₂F₁₂ m/z = 381.1052 [M - 2 PF6]²⁺ Found: 381.1069.

Synthesis of C7

The procedure used for **C5** was repeated using **L1** (81 mg, 0.15 mmol), **L4** (150 mg, 0.15 mmol) FeCl₂ (20 mg, 0.15 mmol) and *t*BuOK (130 mg, 1 mmol) affording **C6** as a dark red solid (37 mg, 16 %). ¹H NMR (400Mz, CD₃CN): 8.40 (s, 2H), 8.30 (d, J = 2.3 Hz, 2H), 7.77 (d, J = 2.2 Hz, 2H), 7.65 (t, J = 8 Hz, 1H), 7.44 (t, J = 7.9 Hz, 8H), 7.22 (t, J = 7.5 Hz, 4H), 7.11 (d, J = 8.3 Hz, 8H), 7.06 (d, J = 8 Hz, 2H), 7.04 (d, J = 2.4 Hz, 2H), 6.98 (d, J = 2.2 Hz, 2H), 6.47 (d, J = 8.8 Hz, 4H), 6.15 (d, J = 8.8 Hz, 4H), 2.57 (s, 6H) ppm. ¹³C RMN (100 MHz, CD₃CN): $\delta = 199.5$, 199.3, 164.5, 154.7, 153.6, 139.2, 138.8, 126.7, 126.6, 116.7, 116.4, 105.6, 104.5, 34.6, 34.5 ppm. HRMS (ESI) Calcd for C₆₁H₄₈FeN₁₂O₂P₂F₁₂ m/z = 518.1682 [M - 2 PF6]²⁺. Found: 518.1727.

NMR spectra of complexes

	In acetonitrile solution			Sensitized TiO ₂			
Dye	$\lambda_{abs-max}$	3	$E_{ox}(Fe^{III}/Fe^{II})^{b}(V)$	$E_{redl}(V)$	$\Delta E (eV)^{c}$	$\lambda_{abs-max}$	Absorbance
	(nm) ^a	(M ⁻¹ .cm ⁻¹) ^a				(nm)	(a.u.)
	302	19000		1 25			
C2	394	7000	0.85 (rev)	(irrev) 2.20	2.20	509	1.40
	520	16200					
	325	42200		1 23			
C4	370	5000	1.13 (rev)	(irrev)	2.36	494	0.67
	501	12800					
	285	18673	0.82	-1.35 (irrev) 2.17	2.17	484	1.30
C5	394	7625					
	433	7050					
	506	12650					
	298	25700					
C6	396	10100	0.81	-1.33 (irrev) 2.14	2 14	481	1 59
CU	428	8540			-01 1	1.59	
	509	17700					
C7	296	40600	0.82	-1.34	2.16	478	0.77
	395	6115					
	431	5075	0.02				0.77
	509	9500					

TABLE S1. Optical and electrochemical properties

^a Measured at 25 °C. ^b First oxidation potential. Potentials are quoted vs SCE. Under these conditions, $E_{1/2 \text{ (Fc+/Fc)}} = 0.39 \text{V/S.C.E.}$ Recorded in using $Bu_4 \text{N}^+\text{PF}_6^-(0.1\text{M})$ as supporting electrolyte at 100 mV. s⁻¹. ^c Electrochemical band gap ($\Delta E = E_{ax} - E_{redI}$)

Figure S1. GGA optimized ground state molecular structures of the C2, C4, C2(D) and C5 grafted on the anatase $(TiO_2)_{82}$ slab

System	TiO ₂ VB	TiO ₂ CB	Dye's HOMO	Dye's LUMO	Dye's LUMO+1
$C2@TiO_2$	-7.52	-3.46	-5.69	-2.62	-2.25
$C4@TiO_2$	-7.50	-3.47	-5.95	-2.71	-2.32
$C2(D)$ (<i>a</i>) TiO_2	-7.48	-3.44	-5.19	-2.12	-1.78
$C5@TiO_2$	-7.44	-3.50	-5.55	-2.16	-1.87

Table S2. Relevant diabatic energy levels (in eV) of the TiO_2 slab and the dye molecules.

Figure S2. Probability distribution $\Gamma(\varepsilon_k)$, left scale, solid line, (eV); and diabatic Density of States (DOS, right scale, dashed lines eV⁻¹) for electron injection from the LUMO+1 of C2 and C4 to the TiO₂. The dye energy levels are also reported as vertical lines.

Figure S3. Calculated electronic coupling V (in eV) for the LUMO+1 of C2 (black), LUMO of C2(D) (grey) and LUMO of C5 (red) with the CB states of the TiO₂ (left axis) ; the diabatic TiO₂ DOS (states/eV) is also reported (right axis, dashed lines).

Figure S4. Calculated electronic coupling V (in eV) for the HOMO of C2 (black) and C5 (red) with the VB and CB states of the TiO₂ (left axis); the diabatic TiO₂ DOS (states/eV) is also reported (right axis, dashed lines).

Figure S5. Calculated electronic coupling V (in eV) for the HOMO of C2 (black) and C4 (orange) with the VB and CB states of the TiO₂ (left axis) ; the diabatic TiO₂ DOS (states/eV) is also reported (right axis, dashed lines).

Photophysics in solution

C5, C6 and **C7** are studied in MeCN in exactly same conditions as in Refs. 2&5 by femtosecond transient absorption spectroscopy, with a time reslution of approx. 80 fs. After excitation in the maximum or on the red egde of the lowest energy ¹MLCT absorption band, the transient absorption is probed with a white light continuum covering the 320 - 750 nm range. The spectral features of ³MLCT state are similar to **C2** and **C4** in MeCN as a narrow excited state absorption band around 350 nm and a broad excited state absorption band from 550-670 nm.⁵ Figure S6 illustrates kinetic traces of **C5** (square curve), **C6** (circle curve) and **C7** (triangle curve) taken in the band of excited state absorption (red curves) and ground state bleaching (blue curves) with their fits (solid black curves). The kinetic traces are normalized at 1 ps in order to directly compare ³MLCT state lifetimes.

Figure S6. Kinetic traces of the excited state absorption (red) and ground state bleaching (blue) with their fits (solid black curves) normalized at 1 ps for **C5** (square dots), **C6** (circle dots) and **C7** (triangle dots). Parameters are same as shown in Table S3.

Table S3 presents the excited state lifetimes obtained by global analysis for three complexes as described previously. The sub-picosecond component is due to electronic and vibrational relaxation after excitation of the singlet ¹MLCT, while the second longer component is the ³MLCT lifetime^{2,5}. Despite different chemical structures, **C5**, **C6** and **C7** have a similar ³MLCT state lifetimes in MeCN, namely in the 10~14ps range. Note that the **C5** ³MLCT lifetime is mid way between the ones of **C2** and its de-carboxylated mother compound^{1,2}. An increased stabilization of the ³MLCT orbital away from the metal center, as observed for **C4** does not seem to apply for **C6** and **C7**.

	(³ MLCT) ⁺ in fs	³ MLCT (ps)
C5	300	14
C6	<irf< td=""><td>10</td></irf<>	10
C7	400	12

Table S3. Excited state lifetimes of **C5**, **C6** and **C7** obtained by global analysis of the kinetic traces at all probe wavelengths.

Table S4. Cartesian coordinates (Angstrom) of the $(TiO_2)_{82}$ cluster

0	-5.30715	-2.62909	8.92822
Ti	-5.43364	-0.78436	9.21238
0	-7.20825	-0.66706	9.93828
Ti	-8.96665	-0.71616	9.38856
0	-8.54862	-0.96348	7.41915
Ti	-9.07975	0.85908	6.95606
0	-9.48724	0.85641	5.17110
Ti	-8.08269	0.86556	3.86313
0	-8.04715	2.65785	3.20943
Ti	-8.21032	2.36836	1.41030
0	-8.29017	2.27075	-1.02570
Ti	-6.38030	2.26660	-1.39403
0	-6.32193	1.62570	-3.41304
Ti	-6.44746	3.29399	-4.08003
0	-8.39072	2.96655	-4.42603
Ti	-10.19473	2.90130	-4.25411
0	-10.57033	3.48030	-2.53247
Ti	-10.06275	2.53275	-0.94530
0	-10.60940	0.76123	-0.93014
Ti	-10.28882	-1.02935	-0.75857
0	-8.52193	-1.44539	-0.50535
Ti	-6.54743	-1.45059	-0.81002
0	-6.66081	-1.60864	1.17725
Ti	-4.75389	-1.88114	1.68083
0	-4.63619	0.26301	1.76330
Ti	-4.51327	1.96818	1.16254
0	-6.40127	2.48676	0.68362
Ti	-5.83262	-2.89800	7.16275
0	-4.48589	-3.57559	6.24837
Ti	-4.50369	-3.08904	4.30916
0	-2.77345	-3.62722	4.21532
Ti	-0.96924	-3.16856	4.18548
0	-0.80037	-3.66624	2.27598
Ti	-0.93954	-2.05583	1.49826
0	-0.82908	0.12265	1.56337
Ti	-0.74297	0.64112	3.57437
0	-0.93699	-1.44987	3.51035
0	-7.59021	-3.67176	7.59209
Ti	-9.13007	-2.84005	7.40924
0	-9.85009	-2.31669	9.12601
0	-5.79244	-0.93792	7.14479

Ti	-5.78794	0.93281	6.81489
0	-4.22841	1.34254	5.86520
Ti	-2.36152	0.97529	6.35026
0	-2.16004	1.59401	8.10760
Ti	-2.13756	-0.10071	8.93441
0	-0.43518	-0.63128	9.48353
Ti	1.19989	-0.98804	8.66511
0	1.29467	0.95112	7.93703
Ti	1.21453	0.72406	6.19241
0	1.17219	-1.12627	6.58182
Ti	0 98546	-3 03809	6 55591
0	1 07011	-2 84392	8 41382
0	-6 59641	-3 02040	4 94413
Ti	-8 25857	-2 85764	4 23129
0	8 61780	2.03704	7.23127
т	-0.01709 8 63805	-5.29782	1 62009
0	-8.03803	-1.39800	2 (02(4
0	-8.38494	-1.11600	5.00204
0	-9.54440	-3.07792	5.62282
0	-9.79029	0.81736	8.76158
0	-7.55026	1.72745	6.89520
0	-8.42789	0.57752	1.83773
0	-6.34884	0.69856	4.48852
Ti	-4.43816	0.77691	3.81658
0	-2.58110	0.68658	4.20461
0	-9.87586	3.09551	0.81801
0	-10.46041	-1.52608	1.04901
0	-10.69385	-1.56224	-2.54972
Ti	-10.15881	-0.59004	-4.04780
0	-9.93294	-1.33390	-5.76841
Ti	-8.29144	-0.72147	-6.38923
Ti	-8.04082	1.03174	-8.74174
0	-6.41583	0.98301	-9.43378
Ti	-4.61070	1.03466	-8.73346
0	-2.98165	0.88906	-9.51309
Ti	-1.18243	0.95845	-8.88004
0	0 44690	0 63400	-9 71801
Ti	2 16342	0.15577	-9 19204
0	2 20121	-1 53348	-8 35703
Ті	2.20121	-0.91587	-6 60822
0	2.40387	1 35842	6 13373
ті	5 70702	0.04867	7 13854
0	6 20767	-0.94807	4 90427
U Ti	0.39707	-0.80933	-4.00457
0	8.10887	-0.98340	-4.12040
U T	8.05036	-2.77538	-3.43554
11	8.23568	-2.4//59	-1.63/82
0	8.35214	-2.21935	0.78262
Ti	10.09785	-2.61134	0.69950
0	10.75046	-0.86358	0.61722
Ti	10.40983	0.92402	0.47432
0	8.59755	1.31158	0.26977
Ti	6.64184	1.43409	0.60547
0	6.46827	-0.19527	1.29828
Ti	6.52250	0.44635	3.32513
0	6.66871	2.03782	2.42565
0	-8.36727	-0.22942	-4.03582
Ti	-6.50874	-0.44775	-3.52550
0	-4.72425	-0.40510	-4.11663
Ti	-4.72959	-0.63293	-6.25535

0	-4.77601	-0.82184	-8.04570
0	-10.78154	1.14986	-4.24706
0	-8.02220	1.18377	-6.73060
Ti	-8.43158	3.10405	-6.65960
0	-6.64761	3.68072	-6.21568
Ti	-4.67293	3.18420	-6.69675
0	-4.65276	3.60039	-4.62444
Ti	-2.75944	3.29921	-4.12338
0	-0.98060	3.51696	-4.69056
Ti	-0.95001	3.01506	-6.77007
0	-1.05843	2.81586	-8.63499
0	-6 57258	-1 12052	-5 70166
0	-8 48687	-0 75348	-8 23537
0	-10 14461	3 56885	-6 09463
0	-8 62184	2 80965	-8 5130/
0	5 35480	1 12114	8 52165
0	-3.33469	0.52228	0.92103
0	-5.08540	-0.32328	9.80550
0	-4.45052	-1.32624	5.70505
0	-4./5/08	-1.99295	-0.39251
11	-2.88088	-1.69322	-0.93546
0	-2.85585	-1.90269	1.14517
0	-4.99563	-3.49242	2.49985
0	-2.94721	-2.20569	-2.74232
Ti	-2.86984	-0.55371	-3.59995
0	-2.96089	-1.12838	-5.74042
Ti	-1.17813	-0.74930	-6.40233
0	-1.07385	-0.47491	-4.16343
Ti	0.79033	-0.66148	-3.82201
0	0.63822	-1.17240	-5.88628
0	-2.85305	0.01982	-1.59277
Ti	-2.69881	2.11223	-1.51116
0	-2.65402	2.22113	0.58880
Ti	-0.75258	1.82826	0.95201
0	1.11022	2.10801	0.34153
Ti	1.01190	2.02782	-1.74587
0	2.92962	1.86941	-1.37096
Ti	4.82699	1.83652	-1.89320
0	5.06145	3 44455	-2 73991
Ti	4 58997	3 03172	-4 55830
0	4 55599	1 27320	-3 95780
Ti	4 49491	-0.80398	-4 08541
0	4 50121	-0.00370	-3.222
т	4.30121	1 00407	-3.22392
0	4.30034	-1.99497	-1.410/3
U T:	0.42022	-2.37308	-0.89002
11	6.43156	-2.2/4/8	1.15619
0	4.62057	-2.15507	0.70502
11	2.74995	-2.14608	1.26862
0	2.72789	-2.28030	-0.83251
Ti	0.82369	-1.87960	-1.21990
0	0.73624	-2.37389	-3.01939
0	-1.03318	-2.15349	-0.58832
0	-2.83363	1.56545	-3.53473
0	-2.69709	3.80156	-2.34245
0	-2.89048	3.55093	-6.36255
0	-0.87841	1.93375	-1.13085
0	-2.39048	-0.68124	7.13939
0	-0.75498	-3.27903	6.15755
0	1.03424	-3.52842	4.46997

Ti	2.80678	-3.30033	3.90319
0	2.76152	-3.81765	2.12370
0	2.92202	-3.58141	6.14537
Ti	4.70362	-3.21159	6.48435
0	6.67986	-3.69368	6.01633
Ti	8.46740	-3.14476	6.43225
0	10.19928	-3.60831	5.85623
Ti	10.20123	-2.99761	4.00942
0	10.76348	-1.24657	3.95728
Ti	10.18086	0.50584	3.78611
0	10.01924	1.24907	5.52249
Ti	8.34478	0.69087	6.11888
0	6.58873	1.10631	5.46439
Ti	4.76760	0.61277	6.04604
0	4 74758	0.33887	3 90264
Ti	2 89719	0.52303	3 36170
0	2 99792	2 17684	2 52077
Ti	2.99792	1 66424	0.70753
0	2.93717	-0.03752	1 3/1860
0	2.91290	-0.03732	3 28700
0	2.85092	-1.58485	1 40645
т	4.08730	-3.02299	4.40045
0	0.40970	-3.31041	J.04095
0	8.40293 2.00921	-5.07570	4.19556
0	2.99831	1.11034	2.02210
0	1.12219	0.42188	3.93319
0	4.84394	1.96182	0.182/2
0	4.72370	-0.290/1	-2.01390
0	6.73302	1.56549	-1.38067
Ti	8.69021	1.46364	-1.89695
0	8.47526	-0.69429	-2.08583
0	2.64260	-0.66980	-4.45677
0	0.90568	-0.17527	-1.80454
0	0.97800	1.42391	-3.74005
Ti	1.03845	3.14774	-4.40893
0	0.79687	3.25000	-6.37001
0	0.88501	3.64067	-2.51231
0	-0.67991	2.33038	2.74604
0	-0.58171	1.18950	5.65321
Ti	4.63327	-1.08394	8.51968
0	4.75570	-3.02402	8.29820
0	4.66354	-1.29409	6.47147
0	6.48939	-3.92463	2.08686
0	6.37297	-1.65203	3.19471
0	8.38463	0.22308	3.83363
0	8.50075	0.75141	7.97144
Ti	8.06713	-1.03817	8.46978
0	8.65689	-2.81426	8.26565
0	8.05696	-1.20946	6.47249
0	6.45786	-1.00150	9.18810
0	10.57005	-3.58094	2.26946
0	9.88148	-3.24175	-1.01784
0	9.43709	-1.03243	-5.46387
Ti	9.10175	-0.88682	-7.27616
0	8.59536	0.95336	-7.68753
Ti	9.19774	2.82825	-7.66239
0	7.66218	3.65601	-7.80240
Ti	5.90496	2.88693	-7.39991
0	5.35738	2.68687	-9.16976

Ti	5.44288	0.84058	-9.49096
0	7.22626	0.69126	-10.20773
Ti	8.98393	0.71839	-9.66952
0	9.86967	2.32115	-9.42400
0	8.43401	0.99021	-3.87290
Ti	8.32716	2.74200	-4.47987
0	8.67684	3.17119	-2.69441
0	9.79164	-0.84473	-9.08116
0	7.54944	-1.72009	-7.34973
0	9.62047	2.99614	-5.87254
0	6.66795	2.93534	-5.17854
0	2.83538	3.54644	-4.45670
0	4.58083	3.59089	-6.47233
0	4.77474	0.78825	7.82782
0	3.01061	-0.93681	9.29762
0	0.92915	-1.94514	0.88106
0	-4.45141	2.44782	2.96475
0	-4.57042	2.16640	-0.94199
0	-6.42638	0.20582	-1.49870
0	-6.45437	3.91836	-2.33617
0	-6.63170	-2.03978	-2.61624
0	-4.63274	1.25081	-6.67056
0	-4.71726	2.97713	-8.50501
0	-1.13972	1.10312	-6.79080
0	-1.26440	-0.98859	-8.14714
0	10.75759	1.43019	2.28125
0	10.51012	1.37162	-1.35497
0	2.42214	0.74355	-7.41122
0	3.68336	0.62250	-10.14119
0	5.81960	0.94253	-7.43413
0	5.28705	-1.08565	-8.82246

¹ Liu, Y.; Harlang, T.; Canton, S. E.; Chabera, P.; Suarez-Alcantara, K.; Fleckhaus, A.; Vithanage, D. A.; Goransson, E.; Corani, A.; Lomoth, R.; Sundstrom, V.; Warnmark, K. *Chem. Commun.* **2013**, *49*, 6412-6414.

² Duchanois, T.; Etienne, T.; Cebrián, C.; Liu, L.; Monari, A.; Beley, M.; Assfeld, X.; Haacke, S.; Gros, P. C. *Eur. J. Inorg. Chem.* **2015**, *2015*, 2469-2477.

³ Huang, Z.; Li, F.; Chen, B.; Xue, F.; Chen, G.; Yuan, G. Appl. Catal. A, 2011, 403, 104–111.

⁴ Ghorbani-Vaghei, R.; Hemmati, S.; Veisi, H. Tetrahedron Lett., 2013, 54, 7095–7099

⁵ Liu, L.; Duchanois, T.; Etienne, T.; Monari, A.; Beley, M.; Assfeld, X.; Haacke, S.; Gros, P. C., *Phy. Chem. Chem. Phys.* **2016**, *18*, 12550-12556