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1. Solubility and thermodynamic parameters of MCC

The dissolved MCC solution, in which DMSO was replaced by d-DMSO, was syringed to an NMR tube

under N, environment. Then CO, was sparged through the solution for 5 min, the tube was quickly

capped and sealed. The CO, pressure was 1 atm at 303 K. Equilibrium constant (Kq) was calculated

through the concentrations of species plus the pressure of CO,.!

Table S1 Solubility of MCC in CO,-DMSO/DBU solvent system at different Wpgy (dissolving condition: P¢o,= 1 atm;

T=303 K; t=1 h)
Solubility
No. Woey Keq
(g/100 g solvent)
1 0.05 5.7 0.54
2 0.1 9.0 0.42
3 0.2 8.6 0.20
4 0.3 8.1 0.13
5 0.4 7.5 0.09
6 0.5 5.5 0.05

Rationale for the appearance of error bars for the solubility

1. As the water bath can’t keep the temperature absolutely uniform, the slightly temperature change

may cause the CO, pressure change in the high-pressure cell, which further influence the cellulose

solubility.

2. While we try to reduce the stirring rate, there might be a very small amount of cellulose attached to the

inner wall and can’t participate dissolving. It will also affect the solubility.
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Fig. S1 Effect of dissolving time on the solubility of MCC (dissolving condition

WDBU=0-1)'

! Pco=0.1 MPa; T=303.15 K;



Table S2 Solubility of MCC in CO,-DMSO/DBU solvent system at different temperature and pressure

Solubility (gram per 100 g of the solvent)

No. Atmoespher

P/ MPa 303K 313K 323K
1 Co, 0.1 5.5 5.6 6.0
2 CO, 0.2 8.6 9.0 8.8
3 Co, 0.3 8.8 8.9 8.7
4 CO, 0.5 7.5 7.6 7.4
5 CO, 0.7 7.0 7.2 7.1
6 Co, 1.0 6.3 6.4 6.7

According to the solubility data of MCC, the standard Gibbs energy (AG®) can be obtained by the following eqn:

0 _
AG?= -RTInK,, )

[BaseH *][ROCO]
K =
€ PCO2 [Base] [ROH]

(2)

Where T stands for temperature; Keq is the equilibrium constant and can be calculated based on the reported
method.! The standard enthalpy (AH®) may be obtained by eqn (3) according to the Van’t Hoff equation and the

standard entropy (AS®) can be calculated by eqn (4).

dinK,, _ AH?
T pT2
dT RT 3)
AGP= AH-TAS® a)

All thermodynamic parameters calculated are listed in Tables S4. For CO,-DMSO/DBU solvent system, AH® values
and AS® values are negative at almost whole temperature range, which indicates that the MCC dissolving process
is enthalpy driven. The change of AS® values from positive to negative with the increase of CO, pressure means
the dissolving process of MCC is entropy driven at low CO, pressure while it is different at high CO, pressure. The
AG® values changed from negative to positive with increasing pressure. It means the interaction between MCC
and organic base is thermodynamic favorable at low CO, pressure and thermodynamic unfavorable at relatively
high CO, pressure. Moreover, it further suggests that the energy cost increased with the pressure increasing.

Therefore, appropriate pressure is important for the dissolution of MCC in DMSO/DBU solvent system.



Table $3 The Thermodynamic Parameters of MCC in the CO,-DMSO/DBU Solvent System at Different

Temperature and Pressure

parameters

AG 8 (k) mol?)

AH 8 (k) mol?)

AS 8 () mol?)

T/K

303
313
323
303
313
323
303
313

323

P/ MPa
0.1 0.2 0.3 0.5 0.7 1.0

-3.89 -1.01 0.07 0.95 1.63 2.28

-1.18 1.87 2.89 3.81 4.55 5.15

-1.03 1.86 2.92 3.86 4.65 5.46
-84.27 -85.43 -82.82 -82.47 -84.11 -82.26
-47.90 -44.66 -43.26 -47.18 -44.30 -46.07

-6.25 1.95 1.97 -6.77 1.22 -4.65
-265.16 -278.47 -273.41 -275.19 -282.81 -278.84
-149.19 -148.58 -147.38 -162.84 -155.99 -163.58
-16.17 0.28 -2.95 -32.90 -10.64 -31.30

2. Solvatochromic parameters

Table S4 Solvatochromic Parameters in CO,-DMSO/DBU Solvent System at Different Temperature and Pressure

Kamlet — Taft parameters of the solvent system

Temperature P/ MPa

A B m B-a

0.0 0.81 1.20 0.59 0.39

0.1 0.85 1.00 0.63 0.15

0.2 0.87 0.92 0.65 0.05

303 K 0.3 0.78 1.26 0.57 0.48
0.5 0.85 1.07 0.63 0.22

0.7 0.84 1.07 0.62 0.23

1.0 0.74 1.12 0.54 0.37

0.0 0.80 1.23 0.59 0.43

0.1 0.84 0.92 0.63 0.08

313K 0.2 0.83 0.87 0.62 0.04
0.3 0.72 1.24 0.52 0.52

0.5 0.75 1.14 0.55 0.39



0.7 0.73 1.16 0.53 0.43

1.0 0.73 1.09 0.53 0.36
0.0 0.66 1.27 0.48 0.60
0.1 0.75 0.96 0.55 0.21
0.2 0.73 0.88 0.53 0.16

323K 0.3 0.72 1.14 0.52 0.42
0.5 0.73 113 0.54 0.40
0.7 0.72 1.05 0.53 0.32
1.0 0.71 1.07 0.51 0.36
313K
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Fig. S2 Solvatochromic parameters in CO,-DMSO/DBU solvent system at different temperature and pressure:

black is a, red is B, blue is m, olive is B-a.

3. Error analysis

Standard Deviation:

Table S5 Effect of Wpgy on the solubility of MCC (dissolving condition: Pcp,=0.2 MPa; T=323.15 K; dissolving time:

1h).



Solubility (gram per 100 g of the solvent)

Wosy (%) D:\t?arjc?;r:is)
1 2 3 Mean
0.05 5.70 5.50 5.60 5.60 0.10
0.10 9.00 8.80 9.10 8.97 0.15
0.20 8.60 9.00 8.70 8.77 0.21
0.30 8.10 8.00 8.15 8.08 0.08
0.40 7.50 7.30 7.40 7.40 0.10
0.50 5.50 5.40 5.50 5.47 0.06

Table S6 Effect of dissolving time on the solubility of MCC (dissolving condition: P¢p,=0.1 MPa; T=303.15 K;

WDBU=O-1)-

Solubility (gram per 100 g of the solvent)

B s
0.5 3.58 3.62 3.57 3.59 0.03

1 5.63 5.69 5.58 5.63 0.06

2 5.67 5.66 5.69 5.67 0.02

3 5.69 5.72 5.75 5.71 0.02

5 5.69 5.68 5.72 5.70 0.02

4. Original ATR-FTIR spectrums and instrument photos

Fig. S3 The photos of instrument for ATR-FTIR measurement
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Fig. S4 ATR-FTIR spectrums of the formed solutions and their precursors: (a) MCC; (b) DMSO; (c) TMG; (d) DBU; (e)

overlap spectrums of different concentration MCC dissolving in CO,-DMSO/TMG solvent system; (f) overlap

spectrums of different concentration MCC dissolving in CO,-DMSO/DBU solvent system.
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5. Original NMR data
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g. S5 Original NMR data of CO,-DMSO/TMG solvent system with and without MCC
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g. S6 Original NMR data of CO,-DMSO/DBU solvent system with and without MCC



6. Original UV-Vis spectrums and instrument photos
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Fig. S7 UV-Vis spectrums of CO,-DMSO/DBU solvent system with: (a) Nile red as dye; (b) 4-nitroaniline as dye
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Fig. S8 The photo of high-pressure UV-Vis instrument for measuring the Kamlet-Taft parameters (instrument

length: 9 cm; volume, diameter and length of the cuvette are 2.3 ml, 1.2 cm, 2.0 cm, respectively)

7. Electrostatic potential (ESP) results

Cellobiose DBU CO;

cation anion

Fig. S9 Electrostatic potential surface of cellobiose, DBU, CO, and ions of product computed at the
MO062X/6-311++G** level. (The regions with positive electrostatic potential and negative electrostatic

potential were depicted by blue and red, respectively.)
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8. Characterization and analysis of the regenerated cellulose

After precipitation, XRD and TGA measurements were taken for the regenerated cellulose (see in Fig. S10). Fig.
S10 (a) shows the XRD diagram of the native and regenerated cellulose. It is obvious that the native cellulose has
a better diffraction pattern while regenerated cellulose has a broad peak. The XRD results indicate the cellulose
crystalline form changed from I to II, which is consistent with literature results.2* The reason account for the
decrystallization of cellulose might be that inter- and intra-molecular hydrogen bonding has been broken partially
in the dissolving process. On the other hand, TGA profile shows similar change from cellulose (with only one

inflection point) to less stable cellulose (with three inflection point).*>
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Fig. S10 Differences of the raw cellulose and regenerate cellulose in (a) XRD spectroscopy; (b) TGA diagram; (c)

SEM photo of regenerated cellulose after freeze-drying the cellulose solution.

9. Reusability/recyclability of the solvent system
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Fig. S11 Cycle times of the DMSO/DBU (5.1 mole percent of DBU) solvent system
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