Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Figure S1 SEM image of ZIF-8 particles.

Figure S2 High-angle annular dark-field scanning TEM (HAADF-STEM) images, elemental mapping (carbon and nitrogen) of nanoporous carbon samples calcined at various temperatures. The scale bars are 500 nm in length.

Figure S3 (a) Deconvoluted C 1s spectra of NPCs obtained with different carbonization temperature, (b) deconvoluted N 1s spectra of NPCs obtained with different carbonization temperatures.

Figure S4 SEM images (a-1, a-2, a-3, a-4), TEM images (b-1, b-2, b-3, b-4), and HRTEM images (c-1, c-2, c-3, c-4) of nanoporous carbon calcined at different temperatures: (1) S-700, (2) S-800, (3) S-900, and (4) S-1000. The circled areas in (c) mark the pores.

Figure S5 Nitrogen adsorption-desorption isotherms for (a) S-700, (b) S-800, (c) S-900, (d) S-1000, and (e) activated carbon (AC).

Figure S6 Pore size distribution curves calculated by the NLDFT method of S-700, S-800, S-900, S-1000, and activated carbon (AC).

Figure S7 The *t*-plot curves for (a) S-700, (b) S-800, (c) S-900, (d) S-1000, and (e) activated carbon (AC).

Figure S8 (a-d) Cyclic voltammograms of (a) S-700, (b) S-800, (c) S-900, and (d) S-1000 electrodes at various scan rates in the scanning range from 5 to 500 mV·s⁻¹. All measurements were conducted in the three electrode system with 1.0 M H₂SO₄ electrolyte. (e) Capacitance retention of all the samples at various scan rates.

Figure S9 Specific capacitance at various scan rates for S-900 sample with different mass loadings.

Figure S10 Cyclic voltammograms of S-900 samples at progressively increased potential windows ranging from 0.8V to 1.0 V.

Figure S11 Cyclic voltammograms (left) and discharge curves (right) in SSCs with a) S-800, b) S-1000, and c) AC, respectively.

Figure S12 a) Gravimetric and b) volumetric capacitances in SSCs at various current densities from 0.1 A g^{-1} to 2 A g^{-1} .

Samples	Carbon	Nitrogen	Oxygen	Zinc	Other elements	
	(at.%)	(at.%)	(at.%)	(at.%)	(at.%)	
S-700	67.6	14.2	14.4	0.9	2.9	
S-800	77.9	13.6	7.0	1.2	0.3	
S-900	82.9	11.9	4.2	0.6	0.4	
S-1000	90.3	3.5	4.3	0.1	1.8	

Table S1. The proportion of different element contents analyzed by XPS analysis.

 Table S2. Details of device configuration in the HS test cell.

HS test cell	Current collector	Materials	Size	
		Diameter of current collector	1.5 cm	
19 19		Thickness of current collector	0.43 mm	
		Density of nanoporous carbon	0.44 g⋅cm ⁻³	
		Density of activated carbon	0.4 g⋅cm ⁻³	
		The weight loading of electrodes	2 mg per electrode	

Table S3 Comparison of electrochemical performance of our sample with the literature reports using three-electrode systems.								
Sample	Current	Scan rate	Specific	Retention ¹	Retention	Mass loading	Electrolyte	Ref.
name	Density	(mV·s ⁻¹)	Capacitance (F·g	(%)	calculation range	(mg·cm ⁻²)		
	(A·g ⁻¹)		¹)		(mV·s ⁻¹)			
S-900	-	5	219	80	5-80	1	$1 \text{ M H}_2 \text{SO}_4$	Present work
OMC ^a	-	5	~225	62	5-50	15-20 mg pellets	$1 \text{ M H}_2 \text{SO}_4$	S1
MPC ^b	-	1	199	72	1-20	11.4-15.2	$1 \text{ M H}_2 \text{SO}_4$	S2
SHC ^c	-	5	261	80	5-100	-	$1 \text{ M H}_2 \text{SO}_4$	S3
MPC ^d	-	5	96	-	-	10	$2 \text{ M} \text{H}_2 \text{SO}_4$	S4
OMC ^a	-	5	211.6	34	5-50	10 mg per electrode	30 wt% KOH	S5
NPC ^e	-	2	271	65	2-100	-	6M KOH	S 6
HPCFsf	1	-	206	88	1-10 (A·g ⁻¹)	-	6M KOH	S7
HKUST-1 ^g	0.1	-	142.3	58	0.1-1 (A·g ⁻¹)	-	30 wt% KOH	S 8
MOF-5 ^h	0.1		121.3	71	0.1-1 (A·g ⁻¹)		30 wt% KOH	S8
Al-PCP ⁱ	0.1		232.8	75	0.1-1 (A·g ⁻¹)		30 wt% KOH	S8

¹ The retention is calculated by changing the scan rate ($mV \cdot s^{-1}$) or current density ($A \cdot g^{-1}$).

^a Ordered mesoporous carbon; ^b SBA-16 silica templated carbons; ^c Halloysite templated carbon; ^d Spherical silica sol templated carbon; ^e MOF derived nanoporous carbon;

^{*f*}*Hierarchical porous carbon foam;* ^{*g*}*HKUST-1 derived carbon;* ^{*h*}*MOF-5 derived carbon;* ^{*i*}*Al-PCP derived carbon.*

Table S4 Comparison of our SSC device performance with other carbon materials using two-electrode device configuration.								
Materials	Operating voltage (V)	Energy density (W·h·kg ⁻¹)	Power density (W·kg ⁻¹)	Energy density (mW·h·cm ⁻³)	Power density (W·cm ⁻³)	Device type	Ref.	
S-900	1.4	14.64	70.00	6.44	0.031	HS test cell	Present work	
L-Graphene ^a	1.0	-	-	1.36	20	Two electrode device	S9	
MPC ^c	1.2	24.5	26.5	12.0	0.013	Two electrode device	S10	
PNG paper ^d	1.6	5.1	1500	3.4	0.0011	Two electrode device	S11	
CNT/graphene fiber	1.0	-	-	6.3	-	Two electrode device	S12	
Graphene	1.0	-	-	2.5	~0.092	Device	S13	
MPC ^c	1.6	9.6	119.4	-	-	Two electrode in electrolyte	S14	
NPC ^e	1.1	10	52	-	-	Stainless steel coin cells	S15	
AC ^f	1.6	10.0	-	-	-	Teflon Swagelok® type 2-electrode cells	S16	

^{*a*} Laser scribed graphene; ^{*b*} Reduced graphene oxide/acid-treated multi-walled carbon nanotubes;^{*c*} Ordered mesoporous carbon;

^d PPy@Nanocellulose@Graphene oxide; ^e Nanoporous carbon; ^f Activated carbons.

Note that comparisons are made for devices, but excluding the mass of the separator.

References

S1. J. Jin, S. Tanaka, Y. Egashira and N. Nishiyama, Carbon 2010, 48, 1985-1989.

- S2. A. B. Fuertes, G. Lota, T. A. Centeno and E. Frackowiak, *Electrochim. Acta* 2005, 50, 2799-2805.
- S3. G. Y. Liu, F. Y. Kang, B. H. Li, Z. H. Huang and X. Y. Chuan, J. Phys. Chem. Solids 2006, 67, 1186-1189.
- S4. S. Han, K. T. Lee, S. M. Oh and T. Hyeon, Carbon 2003, 41, 1049-1056.
- S5. W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan and H. M. Cheng, *Carbon* 2006, 44, 216-224.
- S6. J. A. Hu, H. L. Wang, Q. M. Gao and H. L. Guo, Carbon 2010, 48, 3599-3606.
- S7. Y. K. Lv, L. H. Gan, M. X. Liu, W. Xiong, Z. J. Xu, D. Z. Zhu and D. S. Wright, J. Power Sources 2012, 209, 152-157.
- S8. X. L. Yan, X. J. Li, Z. F. Yan and S. Komarneni, Appl. Surf. Sci. 2014, 308, 306-310.
- S9. M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 2012, 335, 1326-1330..
- S10. T. Q. Lin, I. W. Chen, F. X. Liu, C. Y. Yang, H. Bi, F. F. Xu and F. Q. Huang, Science 2015, 350, 1508-1513.
- S11. Z. H. Wang, P. Tammela, M. Stromme, L. Nyholm, Nanoscale 2015, 7, 3418-3423.
- S12. D. S. Yu, K. Goh, H. Wang, L. Wei, W. C. Jiang, Q. Zhang, L. M. Dai, Y. Chen, *Nat Nanotechnol* 2014, 9, 555-562.
- S13. Z. S. Wu, K. Parvez, X. L. Feng, K. Mullen, Nat Commun 2013, 4, 2487.
- S14. Q. Wang, J. Yan, T. Wei, J. Feng, Y. M. Ren, Z. J. Fan, M. L. Zhang and X. Y. Jing, *Carbon* 2013, 60, 481-487.
- S15. J. D. Xu, Q. M. Gao, Y. L. Zhang, Y. L. Tan, W. Q. Tian, L. H. Zhu and L. Jiang, Sci. Rep. 2014, 4, 5545.
- S16. Demarconnay, E. Raymundo-Pinero and F. Beguin, Electrochem. Commun. 2010, 12, 1275-1278.