Supplementary Information

for

Poly(Vinyl Alcohol) as a Water Protecting Agent for a Silver Nanoparticle: A Role of Polymer Size and Structure

Alexander Kyrychenko,^{a,b*} Dmitry A. Pasko^b and Oleg N. Kalugin^b

^aInstitute of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody square, Kharkiv 61022, Ukraine

^bSchool of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody square, Kharkiv 61022, Ukraine

*To whom correspondence should be addressed:

Email: a.v.kyrychenko@karazin.ua

[AKyrychenko PCCP Supplementary Info.doc]

[23 January 2017, 21:29]

Supplemental Figure S01. MD simulations of PVA₈₈₀–AgNP. Adsorption dynamics of PVA₈₈₀ onto AgNP core was simulated at the NPT ensemble. The silver atoms are shown by the van der Waals model colored in *mauve*. PVA backbone is shown in *green*. The PVA oxygen atoms are *red* balls. Water molecules and buffering ions are not shown for clarity.

Supplemental Figure S02. Radial distribution functions calculated from the center-of-mass (RDF-COM) of the inorganic Ag core. The RDF-COM profiles for PVA in the absence (*blue*) and in the presence of 0.1 M buffering ions NaCl (*magenta*) reveal the similar pattern.

Supplemental Figure S03. Radial distribution functions calculated from the center-of-mass (RDF-COM) of the inorganic Ag core. The RDF-COM profiles for PVA with the different polymer size and structure show the gradual formation of multilayered coating around the Ag core upon going from PVA₂₂₀ up to PVA₁₅₄₀.

Supplemental Figure S04. (*a*) Time evolution of the number of contacts between the Ag atoms and all the PVA atoms (Ag-to-PVA), and the oxygen atoms of the water molecules (Ag-to-water) calculated for PVA₁₅₄₀-AgNP with the cut-off 3.5 Å. (*b*) Dynamics of the number of hydrogen bonds (PVA-to-water and PVA-to-PVA) calculated for PVA₁₅₄₀-AgNP.

Supplemental Figure S05. Water-protecting effect of PVA. Plots of the water-protecting efficiency of PVA (*squares*) for AgNP as a function of the free unbound number of PVA units estimated by the MD simulation. The data are fitted by (1) Langmuir-type ($K=7.68 \cdot 10^{-3}$, $W_{max}=3200$) and (2) Langmuir–Freundlich-type ($K=3.26 \cdot 10^{-3}$, n=0.86, $W_{max}=2800$) adsorption isotherms.