Supplementary Material

for

Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: a moleculardynamics study

Prithwish K. Nandi^a, Niall J. English^a, Zdenek Futera^a, and Antonio Benedetto^{b,c}

^aSchool of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland ^bSchool of Physics, University College Dublin, Belfield, Dublin 4, Ireland. ^cNeutron-Scattering and Imaging Laboratory, Paul Scherrer Institute, Villigen, Switzerland.

Table S1 Hydrogen-bond formation for all 129 HEWL residues ranging from 190 to 390 K. Only those residues have been highlighted which form hydrogen bonds with an overall occupation time exceeding 20% of the entire simulation time. The number specified corresponds to the number of active hydrogen-bond-forming-sites of each residue

Residue	190 K	210 K	230 K	250 K	270 K	310 K	350 K	390 K
Lys1	4	5	2	2				
Val2	1	1	1					
Phe3								
Gly4								
Arg5	9	6	4	3				
Cys6	1	1						
Glu7	2	1						
Leu8								
Ala9								
Ala10								
Ala11	1							
Met12								
Lys13	2	2	1					
Arg14	5	5	2					
His15	1							
Gly16								
Leu17								
Asp18								
Asn19	4							
Tyr20		1						1
Arg21	7	5	1	1				
Gly22								
Tyr23	1	2		1				
Ser24	4	2	2					
Leu25	1	1	1	1	1			
Gly26	1	1	1	1	1			
Asn27			1					
Trp28								1
Val29								
Cys30								
Ala31								
Ala32								
Lys33	3	2						
Phe34	1	1	1	1	1	1		

Glu35	1	1	1	1	1	1	1	
Ser36	2	2	2	2	2	2	2	
Asn37	4	1						
Phe38								
Asn39	2	2						
Thr40	1	1	1	1	1			
Gln41	3	2	1	1				
Ala42								
Thr43	1	1						
Asn44	2	1	1					
Arg45	7	6	4		1			
Asn46	1	1						
Thr47	2	2						
Asp48								
Gly49								
, Ser50								
Thr51					1			
Asp52								
Tyr53	2	1	1	1				
, Gly54								
, Ile55						1	1	
Leu56	1	1	1	1	1	1	1	
Gln57	1	1	1	1	1	1		
lle58								
Asn59	1	1		1	1			
Ser60								
Arg61	4	4	2	2	1			
Trp62	2	2	2	1	1	1	1	
Trp63	3	2	2	2	2		1	
Cys64								
Asn65	2	2	1					
Asp66	1	1						
Gly67	2	1						
Arg68	6	5	3		2			
Thr69								
Pro70								
Gly71		1						
Ser72	3				1			1
Arg73	5	4	3	3	3	2		1
Asn74	5	5	2	2	1	1		
Leu75								
Cvs76								1
Asn77	2	2						1
lle78								
Pro79								
Cys80		1						
Ser81	1	1	2					
Ala82								
Leu83								
Leu84								
Ser85								

Ser86	2	2					
	1	<u> </u>					
Asp87	1						
Thr80	2	1	1				
Ala00	2	1	1	1	1	1	
Ala90	1	2	2	1	1	2	
Val02	4	5	3	4	4	3	
Val92	1	1					
Asii95							
Alago	2	2					
Lys96	2	3					
Lys97	5	5					
11698							
Val99							
Ser100							
Asp101	1	1			1		
GIVIU2	1	1	1			2	
ASh103	3	3	1		1	2	
GIV104			L			L	
Met105	0	2					
Asn106	4	3					
Ala107					-		
Irp108	1	1	1	1	1		
Val109		2	1				
Ala110	1	1	1				
Trp111							
Arg112	5	4	2	1			
Asn113	2	1	1				
Arg114	6	6	4				
Cys115							
Lys116	2	3					
Gly117	1	1	1				
Thr118	1						
Asp119		1	1				
Val120							
Gln121	2	3	3	1			
Ala122							
Trp123	1	1	1	1	1	1	
lle124							
Arg125	3	3	2				
Gly126	1	1					
Cys127							
Arg128	7	4					
Leu129	1						

Figure S1. Partial lifetime contribution (PLC) for (a,b) Arg73, (c) Ser36, (d) Trp123, and (e,f) Ser91. Partial lifetime contribution is defined as *the proportion of time it contributes to the occupation time of that particular hydrogen bond (in percentage terms)*.

Figure S2. Comparison of mean square displacements of water in the hydration layer (left panel) and water consisting the rest bulk part of the solvent (right panel). It is quite evident that hydration layer MSDs are almost one order in magnitude less than the bulk. It clearly indicates that the water in the hydration layer are subject to spatial confinement.

Calculation of probability density associated to hydrogen bond lifetime (in Fig. 6):

The horizontal axes in Fig. 6, representing hydrogen-bond lifetime, is divided into 'N' number of bins with a fixed '*binwidth*' (in *ps*). Here, each bin represents a particular value of lifetime for which the associated probability density, for the ith bin, is given by the following:

where,

 $prefector = \frac{total \ probability}{\sum_{i=1}^{N} (bincount(i) \times binwidth)} \dots \dots \dots \dots \dots (2)$

In this work, we choose to express the total probability as the occupation time expressed in percentage proportion of the total simulation time. If '*OccpTime*' is the occupation time of a hydrogen bond, and '*SimlTime*' be the total length of the simulation, then the total probability is expressed as follows: