Electronic Supplementary Information

Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: Effect of TiO₂ thickness variation

Telugu Bhim Raju,^a Jayraj V. Vaghasiya,^b Mohammad Adil Afroz,^a Saurabh S. Soni,*^b Parameswar Krishnan Iyer^{*a,c}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039. India

^bDepartment of Chemistry, Sardar Patel University, Vallabh Vidyanagar – 388 120,

Gujarat, India.

^cCenter for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039. India

CORRESPONDING AUTHOR: *Parameswar Krishnan Iyer

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039.

INDIA.

AUTHOR EMAIL ADDRESS: pki@iitg.ernet.in

AUTHOR FAX: +91 361 258 2349

S. No.	Table of Contents	Page No.
1.	Material synthesis, Characterization, Fabrication of photovoltaic	\$2-\$5
	devices and Theoretical energy level diagram of dyes	
2.	2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)benzaldehyde (1a) NMR (¹ H,	S6-S7
	¹³ C, ¹⁹ F) and HRMS spectra	
3.	(E)-2-cyano-3-(2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)phenyl)acrylic	S8-S9
	acid (1b) NMR (¹ H, ¹³ C, ¹⁹ F) and HRMS spectra	
4.	4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-carbaldehyde (2a)	S10-S11
	NMR (1 H, 13 C, 19 F) and HRMS spectra	
5.	(E)-2-cyano-3-(4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-	S12-S13
	yl)acrylic acid (2b) NMR (¹ H, ¹³ C, ¹⁹ F) and HRMS spectra	
6.	2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl)benzaldehyde (3a)	S14-S15
	NMR(¹ H, ¹³ C, ¹⁹ F) and HRMS spectra	
7.	(E)-2-cyano-3-(2-fluoro-4-(10-hexyl-10H-phenothiazin-3-	S16-S17
	yl)phenyl)acrylic acid (3b) NMR (¹ H, ¹³ C, ¹⁹ F) and HRMS spectra	

Characterization:

¹H and ¹³C NMR spectra were recorded on Varian 400 MHz spectrometer. The residual signal of the solvent was taken in CDCl₃. The UV-vis absorption spectra experiments were done in Perkin-Elmer Lambda UV-vis spectrometer. Electro spray ionization mass (ESI-MS) spectra were recorded on a Waters (Micro mass MS-Technologies) Q-Tof MS Analyzer spectrometer. Cyclic Voltammetry were performed on CH instruments 611D model with three standard electrochemical cells. Thin film of dyes were coated on glassy carbon electrode, it was used as a working electrode, Ag/Ag⁺ electrode as the reference and Pt wire for counter electrode. 0.1 M tetrabutyl ammonium hexaflurophosphate (Bu₄NPF₆) for supporting electrolyte dissolve in acetonitrile solvent. CV curves were calibrated by using ferrocene as the standard. Time resolved PL measurement to determine the exciton lifetimes of dyes are recorded in LifeSpec II Edinburgh instrument. The J-V characteristics of the fabricated two different thickness based solar cell devices were measured using a Keithley-2400 digital source meter controlled a computer scan rate of 10 mV/s. Impedance Spectroscopy (EIS) measurements were carried out using Solartron 1287 gain phase analyser and recorded by sweeping frequency from 120 KHz to 0.1Hz in dark under -0.65V DC bias. A small AC perturbation (10mV) was imposed onto the system. Open-circuit voltage decay (OCVD) and Tafel polarization curves were obtained by using Solartron electrochemical analyser by sweeping potential ± 0.65 in dark with 25mV/s scan rate. For IPCE characteristics model : SR 300, Optosolar, Gemany, where a 250 W, Xe lamp was used as the light source

Materials and synthesis:

All reactions were performed under argon atmosphere and appropriate solvents were distilled from drying agents prior to use. The starting materials of dyes 3-bromo-9-hexyl-9*H*-carbazole, 4-bromo-*N*,*N*-diphenylaniline, 3-bromo-10-hexyl-10*H*-phenothiazine were prepared according to the published references [1-3]. 2-Fluoro 4-formylphenyl boronic acid, and cyano acetic acid, Nano-crystalline TiO₂ semiconductor (<20 nm, 99.7%, anatase), ethyl cellulose (90.2%) and α -terpineol (90%) were purchased from Sigma-Aldrich and used as received. Compound 1a-3a

was synthesized by Suzuki-coupling reaction and 1b-3b was prepared by Knoevenagel condensation method according to the published journals. TCO (Transparent Conductive Oxide) glass ($15\Omega/cm^2$) and Meltonix tape were procured from Solaronix, Switzerland. Solvents acetonitrile, ethanol and isopropanol, etc., were purchased from Merck and used without further purification.

Figure S1.	. The SEM	images	of various	thickness	TiO ₂ p	hotoanod	e (a) 9µ	m, (b)	12µm	and
(c) 14µm										

Dyes	Dye loading on 9µm TiO ₂	Dye loading on 12µm TiO ₂		
	thickness (mol ⁻¹ .cm ⁻¹)	thickness (mol ⁻¹ .cm ⁻¹)		
1b	1.1 × 10-6	2.3 × 10 ⁻⁶		
2b	0.5 × 10 ⁻⁶	0.8 × 10 ⁻⁶		
3b	0.8 × 10 ⁻⁶	0.9 × 10 ⁻⁶		

Table S1. amount of dye loading on $9\mu m$ and $12 \ \mu m$ titania surfaces

Figure S2. By cyclic voltammetry calculated energy level diagram of organic dyes.

Figure S3. I-V measurement in light and dark condition (Photoanode thickness 9µm)

Figure S4. ESI measurements of 9 µm thickness device recorded in dark at -0.65V DC bias

Dye	R_{pt}	R_{rec} (Ohm) ^a	CPE-P	$\tau_n (\mathrm{ms})^a$	$J_o (\mu A/cm^2)^b$
	(Ohm) ^a		а		
1b	22.5	150	0.68	0.159	0.52
2b	27.0	105	0.67	0.138	0.40
3b	25.5	132	0.63	0.140	0.39

Table S2. DSSC parameters R_{pt} , R_{rec} , τ_n and J_o extracted from EIS measurements and Tafel polarization study

Figure S5. (a) OCVD spectra of 9 μm thickness device, decay curves after illumination are turned off,(b) Tafel polarization study of the device at 9 μm thickness

Figure S6. IPCE characteristics of the 9μ m TiO₂ photoanode with various sensitizer.

Figure S1a. ¹H NMR of 2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)benzaldehyde (1a) in CDCl₃.

ТВR-О-С2-РНF-СН0-13С ТВR-О-С2-РНF-СН0-13С	517/81					5115- 11.02- 21.22- 21.22- 21.22-
en an stad a part de part de la Marine						
230 220 210 200	190 180	170 160	150	140 130 120 110 100 90 80 70 60 f1(ppm)	50 40	30 20 10 0 -10

Figure S2b. ¹³C NMR of 2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)benzaldehyde (1a) in CDCl₃.

Figure S3c. ¹⁹F NMR of 2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)benzaldehyde (1a) in CDCl₃.

Figure S4d. HRMS (ESI) of 2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)benzaldehyde (1a) (ESI) m/z: $[M+H]^+$ calcd for $C_{25}H_{25}FNO$ 374.1920, found 374.1928.

Figure S5a. ¹H NMR of (E)-2-cyano-3-(2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)phenyl)acrylic acid (1b) in CDCl₃.

Figure S6b. ¹³C NMR of (E)-2-cyano-3-(2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)phenyl)acrylic acid (1b) in CDCl₃.

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 f1 (porm)

Figure S7c. ¹³C NMR of (E)-2-cyano-3-(2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)phenyl)acrylic acid (1b) in CDCl₃.

Figure S8d. HRMS of (E)-2-cyano-3-(2-fluoro-4-(9-hexyl-9H-carbazol-3-yl)phenyl)acrylic acid (1b) (ESI) m/z: $[M+H]^+$ calcd for $C_{28}H_{26}FN_2O_2$ 441.1978, found 441.1974.

-10.33

Figure S9a. ¹H NMR of 4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-carbaldehyde (2a) in CDCl₃.

Figure S10b. ¹³C NMR of 4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-carbaldehyde (2a) in CDCl₃.

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm)

Figure S11c. ¹⁹F NMR of 4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-carbaldehyde (2a) in CDCl₃.

Figure S13a. ¹H NMR of (E)-2-cyano-3-(4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-yl)acrylic acid (2b) in CDCl₃.

Figure S14b. ¹³C NMR of (E)-2-cyano-3-(4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4-yl)acrylic acid (2b) in CDCl₃.

---113.09

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm) 30 20 10

Figure S15c. ¹⁹F NMR of (E)-2-cyano-3-(4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4yl)acrylic acid (2b) in CDCl₃

Sample Name Inj Vol Data Filename	TBR-O-NPH3-DYE 0 TBR-O-NPH3-DYE.d	Position InjPosition ACQ Method	Vial 1	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Some Ions Missed 2/24/2016 12:05:25 PM
					r.		
x10 5 +E	SI Scan (18.5 se	c) Frag=135.	OV TBR-O-NPH	13-DYE.d			
31- 1	20 1075						
3-	28.1075						
2.9-							
2.8-							
2.7							
2.6							
2.5-							
2.4							
2.3-							
2.2-							
2.1-							
2-							
1.9-							
1.8-							
1.7	1						
1.6-	6 D.						
1.5-							
1.4							
1.3							
1.2							
00]							
0.9							
0.7	190.1226						
0.6							
0.5							
0.4			435 1	500			
0.3		005 1001					1
0.2		285.1381					
0.1-		1. 1. 1. 1		1			
0	يه من باللغان في في الالالغان	ير بالبراني في المراجع	العبر معاسلة بسطمه				
10	00 150 200	250 300	350 400 4 Cou	50 500 550 nts vs. Mass-to-Cl	harge (m/z)	00 750 800 850	300 300

Figure S16d. HRMS of (E)-2-cyano-3-(4'-(diphenylamino)-3-fluoro-[1,1'-biphenyl]-4yl)acrylic acid (2b) (ESI) m/z: [M+H]+calcd for C₂₈H₂₀FN₂O₂ 435.1509, found 435.1500.

Figure S18b. ¹³C NMR of 2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl)benzaldehyde (3a) in CDCl₃.

-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 fl (ppm)

Figure S19c. ¹⁹F NMR of 2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl)benzaldehyde (3a) in CDCl₃.

Figure S21a. ¹H NMR of (E)-2-cyano-3-(2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl)phenyl)acrylic acid (3b) in CDCl₃.

Figure S22b. ¹³C NMR of (E)-2-cyano-3-(2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl)phenyl)acrylic acid (3b) in CDCl₃.

----111.83

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 f1 (ppm)

Figure S23c. ¹⁹F NMR of (E)-2-cyano-3-(2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl)phenyl)acrylic acid (3b) in CDCl₃.

Figure S24d. HRMS of (E)-2-cyano-3-(2-fluoro-4-(10-hexyl-10H-phenothiazin-3-yl) phenyl) acrylic acid (3b) (ESI) m/z: $[M+H]^+$ calcd for $C_{28}H_{26}FN_2O_2S$ 473.1699, found 473.1681.

References:

G. Marotta, C. P. Kumar, M. G. Lobello, F. Cavazzini, P. Salvatori, K. Ganesh,
 M. K. Nazeeruddin, M. Chandrasekharam and F. De Angelis, *Dalton Trans.*, 2015, 44, 5369-5378.

[2] D. Gudeika, J. V. Grazulevicius, D. Volyniuk, G. Juska, V. Jankauskas and G. Sini, *J. Phys. Chem. C*, **2015**, 119, 28335-28346.

[3] Y. S. Yang, H. Do Kim, J. H. Ryu, K. K. Kim, S. S. Park, K. S. Ahn and J. H. Kim, *Synthetic Met.*, **2011**, 161, 850-855.