Supporting Information

for

Regulating Ancillary Ligands of Ru(II) Complex with Square-Planar Quadridentate Ligand for More Efficient Sensitizers in Dye-sensitized Solar Cells: Insights from Theoretical Investigations

Teng-Fei Lu, Wei Li, Jie Chen*, Fu-Quan Bai, Jian Wang, Ling-Jun He, Hong-Xing Zhang*

International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China

*Corresponding author, email:

zhanghx@jlu.edu.cn (Hong-Xing ZHANG)

drjchen09@gmail.com (Jie CHEN)

Figure S1. Calculated absorption spectra for dye K1 using different functionals dissolved in DMF solvent.

Table S1.	Comparisons	of the g	geometrical	parameters	between	dyes 1	K1,	Ru1,	Ru2,	and	Ru3.	Bond	lengths
are in ange	strom (Å), and	angles a	are in degre	e (°).									

	K1	Ru1	Ru2	Ru3
dRu-N ₁	2.129	2.162	2.188	2.068
dRu-N ₂	2.129	2.153	2.188	2.068
dRu-N ₃	2.041	2.058	1.982	2.032
dRu-N ₄	2.041	2.063	1.982	2.032
$\theta Ru - N_5 - S_1$	170.8	169.2	163.3	167.4
θRu-N ₆ -S ₂	170.9	171.2	163.3	167.4
θN_1 -Ru- N_2	99.8	96.6	108.1	97.7
θN_2 -Ru- N_3	89.7	91.9	86.2	90.3
θN ₃ -Ru-N ₄	82.1	80.6	79.9	83.0
θN_1 -Ru- N_4	89.7	92.3	86.2	90.3
$\theta N_1 - N_2 - N_3 - N_4$	12.6	13.9	7.8	13.0

Theoretical backgrounds for quantum dynamics simulation

Below we briefly summarized the implementation of quantum dynamics. The more detailed description can be found in (*Modelling Electron Quantum Dynamics in Large Molecular Systems*; RSC Publishing: London, 2013.)

The procedure for quantum propagation of the photo-excited electron: the time-evolved wave function $|\phi_i\rangle$ can be written as a liner combination of atomic orbitals:

$$\left|\phi(t)\right\rangle = \sum_{i,\alpha} B_{i,\alpha}(t) \left|i,\alpha\right\rangle$$
 (1)

where $|i, \alpha\rangle$ represents the atomic orbital α of atom *i*. The expansion coefficients $|B_{i,\alpha}(t)\rangle$, introduced in eq 5, are computed according to:

$$B_{i,\alpha}(t) = \sum_{q} Q_{i,\alpha}^{q} C_{q} \exp\left(-\frac{i}{\mathsf{h}} E_{q} t\right)$$
(2)

after solving the generalized eigenvalue equation,

$$HQ^q = E_q SQ^q \tag{3}$$

Where *H* is the EH matrix and *S* is the overlap matrix in the atomic orbital basis. The coefficients C_q , introduced in eq 6, are defined by the expansion of the initial state in the orthonormal basis set of eigenvectors $|q\rangle$,

$$\left|\phi(0)\right\rangle = \sum_{q} C_{q} \left|q\right\rangle \tag{4}$$

The coefficients $Q_{i,\alpha}^q$, introduced in eq 6, are defined according to the expansion of the eigenvectors $|q\rangle$ as a linear combination of atomic orbitals,

$$\left|q\right\rangle = \sum_{i,\alpha} Q_{i,\alpha}^{q} \left|i,\alpha\right\rangle \tag{5}$$

The projection of the time-evolved electronic wave function onto the atomic orbitals of the molecular adsorbate is, therefore, obtained according to the equation,

$$P(t) = \left| \sum_{i,\alpha} \sum_{i,\beta} B_{i,\alpha}^*(t) B_{j,\beta}(t) S_{\alpha,\beta}^{i,j} \right|$$
(6)

Here $S_{\alpha,\beta}^{i,j} = \langle i, \alpha | j, \beta \rangle$, where the indices α and β label specific orbitals in atoms *i* and *j*, respectively.

Note that the sum over j includes all of the atoms in the nanostructure, whereas the sum over i includes only atoms in the initially excited molecular adsorbate. Population is the survival probability of photo-excited electron is still in the adsorbate molecule at time t after the excitation of the system.