Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting information

Dehydro-oxazole, thiazole and imidazole radicals: Insights into the electronic structure, stability and reactivity aspects

Anamika Mukhopadhyay,^a Lilit Jacob^a and Sugumar Venkataramani^{*a}

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manuali PO, S. A. S. Nagar, India

Email: sugumarv@iisermohali.ac.in

Fig 1S: The important geometrical parameters of ²A'' symmetric structure of all the carbon radicals and ²A' symmetry in case of **3a.** The normal font indicate (U)B3LYP/cc-pVTZ and italics indicate (U)M06-2X/cc-pVTZ level of theory

Table 1S: The energy difference between ²A' and ²A'' structures of all the radical isomers at (U)B3LYP/cc-pVTZ, (U)M06-2X/cc-pVTZ and (U)CCSD(T)/cc-pVTZ levels of theory.

	Radical		² A′		² A'	,					
Species	Radical isomer	Level of theory	Energy (Hartrees)	Number of Imaginary frequencies	Energy (Hartrees)	Number of imaginary frequency	ΔE (² A"- ² A') kcal/mol				
		C-centred Radicals									
		UB3LYP/cc-pVTZ	-245.41625	0	-245.21205	1	128.1				
	1b	(U)M06-2X/cc-pVTZ	-245.32472	0	-245.12038	1	128.2				
		CCSD(T)/cc-pVTZ*	-244.93070	NA	-244.90336	NA	17.1				
e		UB3LYP/cc-pVTZ	-245.41706	0	-245.36482	0	32.8				
azo	1c	(U)M06-2X/cc-pVTZ	-245.32487	0	-245.31543	0	5.9				
õ		CCSD(T)/cc-pVTZ*	-244.93033	NA	-244.90766	NA	14.2				
		UB3LYP/cc-pVTZ	-245.41247	0	-245.38870	0	14.9				
	1d	(U)M06-2X/cc-pVTZ	-245.32099	0	-245.29355	0	17.2				
		CCSD(T)/cc-pVTZ*	-244.92704	NA	-244.90404	NA	14.4				
		UB3LYP/cc-pVTZ	-568.41653	0	-568.30790	1	68.2				
	2b	(U)M06-2X/cc-pVTZ	-568.31488	0	-568.16645	1	93.1				
		CCSD(T)/cc-pVTZ*	-567.56006	NA	-567.52575	NA	21.5				
e		UB3LYP/cc-pVTZ	-568.41194	0	-568.35104	0	38.2				
iazo	2c	(U)M06-2X/cc-pVTZ	-568.31118	0	-568.24539	0	41.3				
Т		CCSD(T)/cc-pVTZ*	-567.55458	NA	-567.53009	NA	15.4				
	2d	UB3LYP/cc-pVTZ	-568.40387	0	-568.37537	0	17.9				
		(U)M06-2X/cc-pVTZ	-568.30324	0	-568.27075	0	20.4				
		CCSD(T)/cc-pVTZ*	-567.54870	NA	-567.52022	NA	17.9				
		UB3LYP/cc-pVTZ	-225.54730	0	-225.51264	0	21.7				
	3b	(U)M06-2X/cc-pVTZ	-225.45671	0	-225.41685	0	25.0				
		CCSD(T)/cc-pVTZ*	-225.09106	NA	-225.05749	NA	21.1				
		UB3LYP/cc-pVTZ	-225.54642	0	-225.49234	0	33.9				
	3c	(U)M06-2X/cc-pVTZ	-225.45624	0	-225.39927	0	35.7				
		CCSD(T)/cc-pVTZ*	-225.08999	NA	-225.06538	NA	15.4				
e		UB3LYP/cc-pVTZ	-225.54140	0	-225.52288	0	11.6				
loze	3d	(U)M06-2X/cc-pVTZ	-225.45079	0	-225.43280	0	11.3				
nida		CCSD(T)/cc-pVTZ*	-225.08557	NA	-225.07073	NA	9.3				
ב .				N-centred R	adicals						
		UB3LYP/cc-pVTZ	-225.54992	1	-225.57941	0	-18.5				
	3a (C _s)	(U)M06-2X/cc-pVTZ	-225.44921	1	-225.48605	0	-23.1				
		CCSD(T)/cc-pVTZ*	-225.08114	NA	-225.12539	NA	-27.8				
		UB3LYP/cc-pVTZ	-225.39034 (PAP)	3	-225.57940 (B ₁)	0	-118.6				
	3a(C _{2V})**	(U)M06-2X/cc-pVTZ	-225.28281([®] A _®)	3	-225.48605 (B ₁)	0	-127.5				
	3a(C _{2V})**	CCSD(T)/cc-pVTZ*	-225.09669 (PAR)	NA	-225.12390 (B ₁)	NA	-18.0				

*The single point energies have been calculated at (U)CCSD(T)/cc-pVTZ using (U)B3LYP/cc-pVTZ geometries.

** The calculations for imidazole radical **3a** with C_{2V} point group has been done seperately. A new configuration with ${}^{2}A_{2}$ electronic structure has been optmized and the energy difference $({}^{2}A_{2}-{}^{2}B_{1})$ also been calculated.

Figure 2S. Selected structural information of oxazole, thiazole, imidazole and their dehydro radicals (The bond distance between heteroatom and the radical centre in Å are indicated; The corresponding internuclear distances for the parent molecules are also separately mentioned; The values are obtained from (U)B3LYP/cc-pVTZ (normal font) and (U)M06-2X/cc-pVTZ (italics) levels of theory)

Figure 3S: Two dimensional electrostatic potential surfaces of oxazole, thiazole, imidazole and their ten isomeric radical species (The surfaces are obtained from (U)B3LYP/cc-pVTZ calculations and rendered at an isovalue of 0.002)

Table 2S. The hybridisation details of oxazole, thiazole, imidazole and their radical isomers^a

	X ₁ -C ₂ bond	C ₂ -N ₃ bond	N ₃ -C ₄ bond	C₄-C₅ bond	C_5 -X1 bond
Oxazole 1	C2: SP ^{2.66} (31.6%) O1: SP ^{2.40} (68.4%)	C2: SP ^{1.65} (41.9%) N3: SP ^{1.89} (58.0%) And C2: SP (41.7%) N3: SP(58.2%)	C4: SP ^{2.32} (41.9%) N3: SP ^{2.36} (58.1%)	C4: SP ^{1.75} (49.5%) C5: SP ^{1.48} (50.5%) and C4: SP (49.6%) C5: SP (50.4%)	C5: SP ^{3.06} (31.7%) O1: SP ^{2.38} (68.3%)
Thiazole 2	C2: SP ^{2.48} (49.6%) S1: SP ^{4.53} (50.4%)	C2: SP ^{1.72} (41.5%) N3: SP ^{1.77} (58.5%) And C2: SP (44.7%) N3: SP(55.2%)	C4: SP ^{2.22} (41.5%) N3: SP ^{2.17} (58.5%)	C4: SP ^{1.66} (49.2%) C5: SP ^{1.54} (50.8%) and C4: SP (45.6%) C5: SP (54.4%)	C5: SP ^{2.80} (50.8%) S1: SP ^{4.19} (49.2%)
Imidazole 3	C2: SP ^{2.26} (37.3%) N1: SP ^{1.86} (62.7%)	C: SP ^{1.80} (42.6%) N: SP ^{1.96} (57.4%) and C: SP (57.7%) N: SP(42.3%)	C: SP ^{2.23} (41.9%) N: SP ^{2.20} (58.1%)	C4: SP (51.4%) C5: SP (48.6%) and C4: SP ^{1.61} (51.4%) C5: SP ^{1.74} (48.6%)	C5: SP ^{2.58} (37.7%) N1: SP ^{1.84} (62.4%)
1-dh imidazole 3a	C2: SP ^{1.97} (59.3%) N1: SP ^{2.39} (40.8%)	C: SP ^{1.97} (59.3%) N: SP ^{2.39} (40.8%)	C: SP ^{1.99} (58.7%) N: SP ^{1.92} (41.3%) And C: SP (70.5%) N: SP (29.5%)	C4: SP ^{1.96} (50.0%) C5: SP ^{1.96} (50.0%)	C5: SP ^{1.99} (58.7%) N1: SP ^{1.92} (41.3%) And C5: SP (70.52%) N1: SP (29.5%
2-dh oxazole 1b	C2: SP ^{3.13} (29.4%) O1: SP ^{2.49} (70.5%)	C2: SP ^{1.63} (39.1%) N3: SP ^{1.94} (60.8%) And C2: SP (40.6%) N3: SP(59.4%)	C4: SP ^{2.37} (43.0%) N3: SP ^{2.60} (56.9%)	C4: SP ^{1.72} (49.7%) C5: SP ^{1.47} (50.3%) and C4: SP (50.1%) C5: SP (49.6%)	C5: SP ^{3.15} (32.3%) O1: SP ^{2.75} (67.7%)
2-dh thiazole 2b	C2: SP ^{3.62} (45.3%) S1: SP ^{4.34} (54.7%)	C2: SP ^{1.67} (38.1%) N3: SP ^{1.59} (61.9%) And C2: SP (41.1%) N3: SP(58.9%)	C4: SP ^{2.31} (42.1%) N3: SP ^{2.33} (57.9%)	C4: SP ^{1.65} (49.6%) C5: SP ^{1.51} (50.4%) and C4: SP (47.7%) C5: SP (52.3%)	C5: SP ^{2.84} (51.5%) S1: SP ^{4.88} (48.5%)
2-dh imidazole 3b	C2: SP ^{1.15} (36.9%) N1: SP ^{2.14} (63.1%)	C2: SP ^{1.18} (39.5%) N3: SP ^{1.67} (60.5%) And C2: SP (34.5%) N3: SP(62.5%)	C4: SP ^{2.41} (39.5%) N3: SP ^{2.35} (60.5%)	C4: SP ^{1.68} (48.8%) C5: SP ^{1.60} (51.2%) and C4: SP (48.1%) C5: SP(51.9%)	C5: SP ^{2.64} (36.7%) N1: SP ^{1.64} (63.3%)
4-dh oxazole 1c	C2: SP ^{2.62} (31.9%) O1: SP ^{2.35} (68.1%)	C2: SP ^{1.69} (42.5%) N3: SP ^{2.01} (57.5%) And C2: SP (41.0%) N3: SP(58.9%)	C4: SP ^{2.22} (39.2%) N3: SP ^{2.28} (60.8%)	C4: SP ^{1.73} (46.6%) C5: SP ^{1.52} (53.4%) and C4: SP (48.9%) C5: SP (51.1%)	C5: SP ^{3.27} (30.7%) O1: SP ^{2.40} (69.3%)

4-dh thiazole 2c	C2: SP ^{2.46} (50.2%) S1: SP ^{4.44} (49.8%)	C2: SP ^{1.74} (42.1%) N3: SP ^{1.94} (57.9%) And C2: SP (44.3%) N3: SP (55.7%)	C4: SP ^{2.09} (39.0%) N3: SP ^{2.08} (60.9%)	C4: SP ^{1.60} (46.4%) C5: SP ^{1.54} (53.6%) and C4: SP (44.9%) C5: SP (55.1%)	C5: SP ^{3.16} (48.1%) S1: SP ^{4.28} (51.9%)
4-dh imidazole 3c	C2: SP (72.4%) N1: SP(27.6%)	C2: SP ^{1.99} (61.2%) N3: SP ^{0.90} (38.8%)	C4: SP ^{1.19} (66.0%) N3: SP ^{1.14} (34.0%)	C4: SP ^{.0.85} (53.3%) C5: SP ^{1.78} (46.7%) And C4: SP (59.4%) C5: SP(40.7%)	C5: SP ^{2.37} (38.2%) N1: SP ^{1.88} (61.8%)
5-dh oxazole 1d	C2: SP ^{2.72} (32.2%) O1: SP ^{2.63} (67.8%)	C2: SP ^{1.66} (42.5%) N3: SP ^{1.87} (58.2%) And C2: SP (41.3%) N3: SP (58.7%)	C4: SP ^{2.45} (41.0%) N3: SP ^{2.28} (58.9%)	C4: SP ^{1.73} (46.6%) C5: SP ^{1.52} (53.4%) and C4: SP (48.9%) C5: SP (51.1%)	C5: SP ^{3.30} (29.8%) O1: SP ^{2.49} (70.2%)
5-dh thiazole 2d	C2: SP ^{2.50} (50.7%) S1: SP ^{5.04} (49.3%)	C2: SP ^{1.70} (41.3%) N3: SP ^{1.72} (58.7%) ^{And} C2: SP (43.3%) N3: SP (56.7%)	C4: SP ^{2.36} (40.6%) N3: SP ^{2.13} (59.4%)	C4: SP ^{1.71} (52.4%) C5: SP ^{1.43} (47.6%) and C4: SP (45.4%) C5: SP (54.6%)	C5: SP ^{3.13} (48.7%) S1: SP ^{4.27} (51.3%)
5-dh imidazole 3d	C2: SP ^{2.26} (36.4%) N1: SP ^{1.73} (63.6%)	C2: SP ^{1.82} (42.7%) N3: SP ^{2.04} (57.3%) And C2: SP (43.1%) N3: SP(56.9%)	C4: SP ^{2.06} (43.5%) N3: SP ^{2.91} (56.5%)	C4: SP ² (51.1%) C5: SP ^{0.84} (48.9%) And C4: SP ¹ (56.7%) C5: SP(43.2%)	C5: SP ^{1.58} (35.2%) N1: SP ^{2.0} (64.8%)

^aThe values are obtained from NBO calculations at (U)B3LYP/cc-pVTZ level of theory; The contribution of any particular atom to corresponding bond hybridisation is given in parentheses. The numbering is indicated for the parent compounds.

9	Species	Donor NBO	Acceptor NBO	E (2) (kcal/mol)
		LP(N3)	LP*(C2)	7.0
azole oxazole			BD*(C2-O1)	3.9
	1b	LP1(O1)	LP*(C2)	0.4
		LP2(O1)	BD*(C2-N3)	18.7
			BD*(C4-C5)	10.5
		LP(N3)	LP*(C4)	/.1/
ole		1.04(04)	BD*(C4-C5)	2.2
xaz	10	LPI(01)	LP*(C4)	0.3
0Xaz		LP2(O1)	BD*(C2-N3)	19.1
			BD*(C4-C5)	8.8
		LP(N3)		1.1
	1.4		BD*(C4-C5)	3.0
	10			1.7
		LP2(O1)	BD*(C2-N3)	10.0
			BD (C4-C3)	14.5
		LP(N3)	LP (C2) PD*(C2 S1)	19.0
	26	LD1(S1)	DD*(C2-31)	3.2
	26			12 5
		LP2(O1)	BD*(C2-N3) BD*(C4-C5)	15.5 Q /
				10.6
<u>e</u>		LP(N3)	BD*(C4-C5)	2 9
lozi	2c	LP1(01)		0.0
Lhia			BD*(C2-N3)	16.5
F		LP2(O1)	BD*(C4-C5)	6.8
	-		LP*(C5)	1.1
		LP(N3)	BD*(C4-C5)	3.7
	2d	LP1(O1)	LP*(C5)	0.7
	-		BD*(C2-N3)	13.7
		LP2(O1)	BD*(C4-C5)	11.5
			BD* (N1-C2)	3.7
	3-	LP (N3)	BD* (C4-C5)	3.7
	3a		BD* (N3-C2)	3.8
		LP (NI)	BD* (C4-C5)	3.6
		ID (NIS)	LP* (C2)	9.2
	26	LF (N3)	BD* (C2-N1)	2.8
ole	50	ID (N1)	BD* (C2-N3)	22.7
daz			BD* (C4-C5)	14.5
<u>n</u>		1 P (N3)	BD* (N1-C2)	81.0
	3c		BD* (C4-C5)	28.9
		BD* (N1-C2)	BD* (C4-C5)	6.2
		1 P (N3)	LP* (C5)	1.1
	34	LP (N3)	BD* (C3-C4)	3.4
	50	I P (N1)	BD* (C2-N3)	22.6
			BD* (C4-C5)	16.9

 Table 3S:
 The second order perturbation energy from the NBO analysis at (U)B3LYP/cc-pVTZ level of theory.

LP = bonding orbital of lone pair, LP* = antibonding molecular orbital of lone pair, BD* = antibonding orbital of the particular bond mentioned

Figure 4S: Molecular orbital diagram of parent heterocyclic molecules at CASSCF/cc-pVTZ//(U)B3LYP/cc-pVTZ (The active space orbitals are indicated along with their energies in hartrees and natural orbital occupancy numbers (NOON) in parentheses; the orbital symmetries are indicated below each one of them. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been highlighted by a box; The parameters corresponding to HOMO are indicated in bold; All the orbitals have been rendered at an isovalue 0.05)

Figure 5S: Singly occupied molecular orbital's (SOMO) of dehydro- oxazole, thiazole, and imidazole radical isomers; (The SOMO's obtained at CASSCF/cc-pVTZ//(U)B3LYP/cc-pVTZ have been rendered at different isovalues; The corresponding isovalues are indicated at the left column; The corresponding structure of each radical is also indicated at the top)

Figure 6S. The important geometrical parameters and molecular orbital diagram of **3a** corresponding to both C_{2v} and C_s symmetry. The normal font denotes bond lengths and bond angles obtained at (U)B3LYP/cc-pVTZ level of theory and the parameters in italics corresponds to the (U)M06-2X/cc-pVTZ level of theory. The MO orbitals are calculated at CASSCF/cc-pVTZ//(U)B3LYP/cc-pVTZ using Molpro. The active space orbitals are indicated along with their energies in hartrees and natural orbital occupancy numbers (NOON) in parentheses; the orbital symmetries are indicated below each one of them.

Table	4S: The	energy	difference	between	\mathbf{C}_{S}	and	C_{2V}	structure	of	3a	at	differen	t level	s of	theor	y.
-------	----------------	--------	------------	---------	------------------	-----	----------	-----------	----	----	----	----------	---------	------	-------	----

Level of theroy	Energy of C _s structure (Hartrees)	Energy of C _{2V} structure (Hartrees)	ΔE (Cs-C2v) kcal/mol
UB3LYP/cc-pVTZ	-225.57940522	-225.57940420	-0.00062751
CCSD(T)/cc-pVTZ// UB3LYP/cc-pVTZ	-225.12538971	-225.12539012	0.00025720
(U)M06-2X/cc-pVTZ	-225.48605487	-225.48605487	0.00000000
CCSD(T)/cc-pVTZ// (U)M06-2X/cc-pVTZ	-225.12530511	-225.12530509	-0.00001255

TABLE 5S. The bond dissociation energy (BDE) values for the radical formation of all oxazole, thiazole and imidazole radical isomers, obtained from calculations at (U)B3LYP/cc-pVTZ level of theory.

Species	;	Enthalphy (Hartrees)	Enthalphy of parent (Hartrees)	BDE (kcal/mol)
	1b	-245.41175		116.2
Oxazole	1c	-245.41260	-246.09913	115.7
	1d	-245.40800		118.6
	2b	-568.41163		108.1
Thiazole	2c	-568.40711	-569.08615	111.0
	2d	-568.39903		116.1
	3a	-225.57475		93.3
Imidazala	3b	-225.54255	-226 22668	113.5
iiiiuazule	3c	-225.54177	-220.22330	114.0
	3d	-225.53669		117.2

Enthalphy of Hydrogen atom at (U)B3LYP/cc-pVTZ = - 0.50216 Hartrees

Table 6S: Rate constant of all the reaction channels for both oxazole and thiazole radical as obtained from (U)B3LYP/c-pVTZ level of theory. All rate constant values are in s⁻¹

S. No.	Species	lsomer	Reaction	$\Delta G_{product-reactant}$ (kcal/mol)	$\Delta S_{product-reactant}$ (cal/mol.K)	k (s ⁻¹)
			1b-8	18.90	6.96	5.77×10 ⁻¹⁴
		16	8-10,11	-13.75	29.15	3.49×10 ⁶
		10	1b-9	-13.46	7.36	8.64×10 ⁻⁷
			9-10,11	18.61	28.75	2.59×10 ⁻⁶
			1c-21	-3.72	8.71	3.23×10 ⁻¹⁰
			21-22	4.41	-1.59	1.15×10 ⁻²²
		1 -	22-25,26	-13.25	33.45	2.91×10 ³
1	Oxazole	10	1c-23	22.18	9.63	2.12×10 ⁻¹⁷
			23-24	-14.58	-3.29	1.35×10 ⁻³
			24-25,6	8.52	35.79	1.52×10 ⁻³
			1d-36	25.90	7.01	1.15×10 ⁻¹⁸
			36-7,38	-36.18	34.14	3.06×10^{8}
		1d	1d-37	-2.38	7.53	4.89
			37-7,38	-7.90	33.62	3.82×10 ³
			1d-21	-6.58	8.62	3.84×10 ⁻¹⁹
			2b-12	19.78	8.37	4.58×10 ⁻¹³
			12-11,14	-5.38	17.83	1.73×10^{10}
			2b-13	8.84	8.20	4.49×10 ⁻¹⁴
		26	13-11,14	5.55	17.83	4.88×10 ⁻³
		20	2b-15	6.56	6.25	1.33×10 ²
			15-16	19.68	2.02	1.27×10 ⁻²¹
		$\begin{array}{c} 1c \\ 22-25, \\ 1c-23 \\ 23-24 \\ 24-25, \\ 1d \\ 24-25, \\ 1d \\ 36-7, 3 \\ 1d \\ 1d-37 \\ 36-7, 3 \\ 1d-21 \\ 2b-12 \\ 12-11, \\ 2b-13 \\ 13-11, \\ 2b \\ 15-16 \\ 15-17 \\ 16-17 \\ 2c \\ 2b \\ 15-16 \\ 15-17 \\ 16-17 \\ 2c \\ 2b \\ 15-16 \\ 15-17 \\ 16-17 \\ 2c \\ 2b \\ 15-16 \\ 15-17 \\ 16-17 \\ 2c \\ 2b \\ 15-16 \\ 15-17 \\ 16-17 \\ 2c \\ 2c \\ 28-31, \\ 2c \\ 26 \\ 30-7, \\ 30-7, \\ 30-7, \\ 30-7, \\ 3b-19 \\ 10 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	15-17	46.29	25.33	4.62×10 ⁻²⁸
			16-17	26.61	23.31	1.29×10 ⁻¹⁰
			2c-27	15.77	5.79	1.16×10 ⁻⁴
2	thiazole		27-28	4.83	0.87	2.22×10 ⁻²⁴
		_	28-31,36	23.49	36.09	6.10×10 ⁻¹⁶
		2c	2c-29	32.57	8.75	1.70×10 ⁻²¹
			29-30	-8.98	-1.4	5.94×10 ⁻⁶
			30-7,32	-19.28	22.58	5.7×10 ⁹
			2d-39	18.67	8.51	6.34×10 ⁻¹⁴
		. .	39-7.32	-19.40	21.32	9.32×10 ¹⁰
		2d	2d-30	18.58	7.25	9.94×10 ⁻⁴
			2d-27	8.65	7.29	2.08×10 ⁻²⁹
			3a-5	48.43	6.66	1.7×10 ⁻³⁰
		3a	5-6.7	12.06	35.61	9.86×10 ⁻⁸
			3b-19	16.58	7.69	1.45×10 ⁻²¹
			19-20,11	-1.48	27.48	4.36
		3b	3b-18	16.61	8.56	1.49×10 ⁻¹⁴
			18-20.11	1.45	26.61	9.59×10 ⁻³
3	imidazo le		3c-33	13.48	7.88	1.71×10 ⁻²⁰
		3c	33-34	11.39	0.123	1.44×10 ⁻²⁹
			34-26.35	-0.87	35.79	1.28×10 ⁻⁴
			3d-41	21.33	7.87	8.16×10 ⁻¹⁷
		. .	41-26.7	-14.15	34.73	3.32×10 ³
		3d	3d-42	17.48	7.62	1.90×10 ⁻¹⁵
			41-26,7	-10.30	34.98	3.35×10 ¹

	Lowest	Absolute		<s2> lanr</s2>	nihilated)		·		•••		
Species	harmonic frequency	energy (Hartrees)	ZVPE (Hartrees)	Before	After	Point Group	Electronic structure	ΔG (Hartrees)	ΔH (Hartrees)	Spin density	
3a	516.64	-225.6363	0.0567	0.7654	0.7502	Cs	² B1	-225.6062	-225.5747	0.49 (C2); 0.35 (C4=C5)	
TS _{3a-5}	380.29(i)	-225.5383	0.0519	0.7807	0.7505	C1	² A	-225.5137	-225.4811	0.92 (N1)	
5	151.52	-225.5526	0.0521	0.7703	0.7502	C1	² A	-225.5290	-225.4944	0.97 (N1)	
TS _{5-6,7}	447.73(i)	-225.5033	0.0473	0.7815	0.7505	C1	² A	-225.4860	-225.4491	0.49 (C2); 0.38 (C4)	
6	427.53	-132.0498	0.0285	0.7711	0.7501	C1	² A	-132.0455	-132.0167	0.56 (C2); 0.56 (C4)	
7	762.11	-93.46137	0.0163	0.0000	0.0000	$C_{\infty V}$	$^{1}\Sigma$	-93.4644	-93.4415	-	
1b	563.70	-245.4616	0.0454	0.7577	0.7500	Cs	² A′	-245.4429	-245.4117	0.87 (C2)	
TS _{1b-8}	489.00(i)	-245.3998	0.0406	0.7866	0.7505	C1	² A	-245.3864	-245.3541	0.76 (C4); 0.39 (C2)	
TS _{1b-9}	598.31(i)	-245.4153	0.0405	0.7721	0.7502	C_1	² A	-245.4020	-245.3699	0.60 (C5); 0.49 (C2)	
8	163.55	-245.4253	0.0409	0.7591	0.7500	Cs	² A′	-245.4128	-245.3783	0.97 (C4)	
9	123.32	-245.4775	0.0418	0.7610	0.7500	Cs	² A′	-245.4644	-245.4297	0.99 (C5)	
TS _{8-10,11}	568.62(i)	-245.4072	0.0377	0.7715	0.7503	C1	² A	-245.3993	-245.3630	0.59 (C4); 0.21 (N3)	
TS _{9-10,11}	303.92(i)	-245.4321	0.0381	0.7641	0.7501	C_1	² A	-245.4245	-245.3874	0.34 (O1) 0.38 (C5); 0.49 (N3) 0.19 (O1)	
10	509.64	-168.0673	0.0100	0.7624	0.7501	$C_{\infty V}$	-	-168.0793	-168.0536	0.36 (O1); 0.71 (N3)	
11	649.92	-77.3635	0.0269	0.0000	0.0000	D∞H	$^{1}\Sigma_{g}$	-77.3555	-77.3328	-	
2b	446.13	-568.4589	0.0424	0.7566	0.7500	Cs	² A′	-568.4443	-568.4116	0.73 (C2)	
TS _{2b-12}	424.72(i)	-568.3990	0.0376	0.7749	0.7503	C1	² A	-568.3897	-568.3558	0.76 (C4); 0.32 (C2)	
TS _{2b-13}	409.39(i)	-568.3980	0.0387	0.7913	0.7505	C ₁	2A	-568.3875	-568.3541	0.73(C5); 0.37(C2)	
TS _{2b-15}	447.60(i)	-568.4324	0.0392	0.7665	0.7501	C ₁	2A	-568.4214	-568.3879	0.64 (S1); 0.21 (C2) 0.16 (C4)	
12	131.29	-568.4202	0.0374	0.7604	0.7501	C1	2A	-568.4128	-568.3761	0.96 (C4)	
13	66.47	-568.4393	0.0392	0.7627	0.7501	C ₁	2A	-568.4302	-568.3936	1.01 (C5)	
15	112.18	-568.4451	0.0408	0.7543	0.7500	C ₁	2A		-568.3982	0.99 (S1)	
158	112.54	-568.4263	0.0404	0.7553	0.7500	C ₁	2A	-568.4159	-568.3795	0.57 (C5); 0.36 (S1)	
150	290.60	-132.1084	0.0306	0.7611	0.7501	C1	2A	-132.1022	-132.0731	0.82(C4); 0.32(C5)	
1312-14,11	335.00(I)	-508.411/	0.0356	0.7714	0.7502	C_1	-A	-508.4072	-208.3091	0.13 (N3)	
TS _{13-14,11}	502.90(i)	-568.4023	0.0359	0.7735	0.7503	C1	² A	-568.3974	-568.3596	0.48 (C5); 0.38 (S1) 0.29 (N3)	
TS 15-16	1742.73(i)	-568.3638	0.0335	0.7630	0.7501	C1	² A	-568.3607	-568.3235	0.68 (C5); 0.39 (S1)	
16	110.75	-568.4099	0.0374	0.7573	0.7500	C1	² A	-568.4025	-568.3659	0.76 (C5); 0.19 (S1)	
TS ₁₆₋₁₇	114.12(i)	-568.3499	0.0293	0.7528	0.7500	C1	² A	-568.3531	-568.3129	0.97 (H)	
TS 15-17	600.09(i)	-568.3461	0.0303	0.7631	0.7500	C1	² A	-568.3466	-568.3088	0.20 (S1); 0.91 (H)	
TS 15-15a	1454.78(i)	-568.3737	0.0356	0.7543	0.7500	C1	² A	-568.3678	-568.3319	0.33 (C5); 0.54 (S1)	
TS 15a-15b,31	180.54(i)	-568.3682	0.0354	0.7682	0.7502	C1	² A	-568.3647	-568.3255	0.70 (C4); 0.29 (C1); 0.08 (S1)	
14	434.22	-491.0548	0.0072	0.7664	0.7501	$C_{\infty V}$	² A	-491.0658	-491.0434	0.45 (C4); 0.67 (S1)	
17	119.78	-567.8477	0.0291	0.0000	0.0000	Cs	¹ A'	-567.8472	-567.8126	-	
3b	445.16	-225.6054	0.0619	0.7563	0.7500	Cs	² A′	-225.5742	-225.5425	0.82 (C2)	
TS _{3b-19}	587.82(i)	-225.5257	0.0520	0.7815	0.7503	C1	² A	-225.3994	-225.367	0.71 (C5); 0.40 (C2)	
19	134.55	-225.5653	0.0514	0.7614	0.7501	C1	² A	-225.5430	-225.5077	0.99 (C5)	
TS _{19-20,11}	507(i)	-225.5355	0.0490	0.7752	0.7504	C_1	² A	-225.5166	-225.4797	0.48 (C5); 0.30 (N1) 0.43 (N3)	
20	471.21	-148.1868	0.0196	0.7720	0.7503	Cs	² A″	-148.1909	-148.1629	0.62 (N1); 0.58 (N3)	
TS _{3b-18}	467.38(i)	-225.5417	0.0531	0.7847	0.7505	C1	² A	-225.5163	-225.4832	0.38 (C2); 0.78 (C4)	

Table 7S: Properties of reactants, intermediates, products and transition states of unimolecular decomposition pathways of dehydro-oxazole, thiazole and imidazole radicals at (U)B3LYP/cc-pVTZ levels of theory.

	18	153.46	-225.5718	0.0532	0.7598	0.7500	Cs	² A″	-225.5478	-225.5121	0.98 (C4)
•	TS _{18-20,11}	537.37(i)	-225.5351	0.0495	0.7760	0.7504	C1	² A	-225.5155	-225.4791	0.49 (C4); 0.48 (N1)
	1c	601.48	-245.4628	0.0458	0.7569	0.7500	Cs	² A′	-245.4437	-245.4126	0.89 (C4)
	TS _{1c-21}	802.07(i)	-245.4081	0.0401	0.7661	0.7501	C1	² A	-245.3954	-245.3628	0.41 (C4); 0.24 (N3)
	21	89.67	-245.4609	0.0403	0.7671	0.7671	C1	² A	-245.4497	-245.4144	0.59 (C5); 0.46 (N3)
	TS _{1c-23}	347.83(i)	-245.3926	0.0401	0.7615	0.7615	C1	² A	-245.3797	-245.3474	0.79 (C4); 0.17 (C2)
	23	61.77	-245.4181	0.0389	0.7699	0.7501	C_1	² A	-245.4084	-245.3727	0.62 (C4); 0.48 (C2)
	TS ₂₁₋₂₂	1997.32(i)	-245.3739	0.0352	0.7571	0.7500	C1	² A	-245.3672	-245.3326	0.40 (C2); 0.24 (N3)
	22	154.28	-245.4568	0.0426	0.7535	0.7500	C1	² A	-245.4426	-245.4081	0.66 (C2); 0.29 (O1)
	TS ₂₃₋₂₄	1059.71(i)	-245.3819	0.0357	0.7587	0.7500	C1	² A	-245.3744	-245.3402	0.68 (C2)
	24	186.57	-245.4443	0.0408	0.7551	0.7500	C1	² A	-245.4316	-245.3975	0.64 (C5); 0.29 (O1)
•	TS _{22-25,26}	568.86(i)	-245.4319	0.0386	0.7678	0.7502	C1	² A	-245.4224	-245.3869	0.33 (C5); 0.28 (C2)
	TS _{24-25,6}	277.01(i)	-245.4043	0.0359	0.7746	0.7503	C1	² A	-245.3987	-245.3614	0.42 (C4); 0.48 (C2)
	25	2211.73	-113.3573	0.0050	0.0000	0.0000	C∞v	$^{1}\Sigma$	-113.3713	-113.3489	0.12 (C5) -
	26	341.63	-132.0978	0.0294	0.7686	0.7501	C1	² A	-132.0924	-132.0635	0.64 (C5); 0.54 (N3)
	2c	466.02	-568.4542	0.0423	0.7572	0.7500	Cs	² A′	-568.4396	-568.4071	0.86 (C4)
	TS _{2c-27}	311.47(i)	-568.4147	0.0396	0.7649	0.7501	C1	² A	-568.4033	-568.3699	0.51 (C4); 0.69 (C2)
	27	143.75	-568.4267	0.0385	0.7919	0.7507	C1	² A	-568.4178	-568.3818	0.98 (S1)
	TS _{2c-29}	269.12(i)	-568.3756	0.0374	0.7728	0.7503	C1	² A	-568.3668	-568.3327	0.74 (C4); 0.23 (C2)
	29	78.44	-568.3950	0.0374	0.7977	0.7508	C1	² A	-568.3877	-568.3510	0.33 (C4); 0.61 (S1)
	TS ₂₇₋₂₈	1974.79(i)	-568.3391	0.0335	0.7566	0.7500	C1	² A	-568.3354	-568.2993	0.26 (C2) 0.34 (S1); 0.33 (C2)
	28	123.02	-568.4180	0.0407	0.7556	0.7500	C1	² A	-568.4068	-568.3711	0.19 (N3) 0.41 (S1); 0.56 (C2)
	TS ₂₉₋₃₀	889.82(i)	-568.3506	0.0328	0.7601	0.7501	C1	² A	-568.3486	-568.3109	0.69 (C2)
	30	103.00	-568.4112	0.0388	0.7561	0.7500	C1	² A	-568.4021	-568.3660	0.55 (C5); 0.37 (S1)
	TS _{28-26,31}	359.29(i)	-568.3502	0.0352	0.7768	0.7505	C1	² A	-568.3459	-568.3081	0.47 (C5); 0.11 (S1)
	TS _{30-7,32}	489.76(i)	-568.4009	0.0359	0.7593	0.7501	C1	² A	-568.3955	-568.3584	0.11 (C2); 0.46 (N3) 0.25 (C4); 0.11 (C5)
	31	1304.18	-436.2593	0.0029	0.0000	0.0000	C∞v	$^{1}\Sigma$	-436.2769	-436.2530	0.34 (S1); 0.27 (C2) -
	32	367.75	-474.9660	0.0167	0.7653	0.7501	C∞v	-	-474.9684	-474.9445	0.67 (S1); 0.45 (C4)
	3c	548.94	-225.6048	0.0584	0.7561	0.7500	Cs	² A′	-225.5732	-225.5418	0.88 (C4)
	TS _{3c-33}	634.03(i)	-225.5276	0.0526	0.7693	0.7502	C1	² A	-225.5024	-225.4698	0.35 (C4); 0.25 (N1)
	33	120.20	-225.5756	0.0527	0.7784	0.7505	Cs	² A″	-225.5517	-225.5165	0.27 (N3) 0.51 (C5); 0.30 (N1)
	TS ₃₃₋₃₄	2152.50(i)	-225.4794	0.0470	0.7616	0.7501	C1	² A	-225.4612	-225.4261	0.45 (N3) 0.44 (C2); 0.22 (N1)
	34	128.08	-225.5581	0.0531	0.7534	0.7500	Cs	² A'	-225.5336	-225.4983	0.29 (N3) 0.73 (C2); 0.20 (N1)
	TS _{34-26,35}	513.79(i)	-225.5162	0.0488	0.7698	0.7503	C1	² A	-225.4973	-225.4606	0.23 (C2); 0.37 (C5)
	35	470.81	-93.4386	0.0156	-	-	Con	$^{1}\Sigma$	-93.4425	-93.4192	0.44 (N3)
	1d	540.16	-245.4579	0.0455	0.7594	0.7500	C∞v	² A′	-245.4392	-245.4079	0.93 (C5)
	TS 1d-36	466.90(i)	-245.3861	0.0409	0.8002	0.7506	C1	² A	-245.3725	-245.3402	0.42 (C5); 0.76 (N3)
	36	160.52	-245.4103	0.0409	0.7577	0.7500	C1	² A	-245.3979	-245.3634	0.96 (N3)

TS _{1d-37}	383.14(i)	-245.4266	0.0409	0.7598	0.7500	C1	² A	-245.4129	-245.3806	0.68 (C5); 0.29 (C2)
37	148.47	-245.4553	0.0410	0.7548	0.7500	C1	² A	-245.4429	-245.4082	0.71 (C2); 0.18 (N3)
TS 1d-21	340.38(i)	-245.3808	0.0376	0.7674	0.7502	C1	² A	-245.3714	-245.3375	0.51 (C5); 0.45 (N3)
TS _{36-7,38}	862.91(i)	-245.3966	0.0374	0.7722	0.7503	C_1	² A	-245.3885	-245.3528	0.13 (01) 0.25 (C4); 0.64 (N3) 0.27 (O1)
TS _{37-7,38}	460.97(i)	-245.4306	0.0374	0.7595	0.7500	C_1	² A	-245.4229	-245.3864	0.39 (C4); 0.29 (C2)
38	482.88	-151.9864	0.0188	0.7577	0.7500	Cs	²A′	-151.9912	-151.9633	0.70 (C4); 0.29 (O1)
2d	418.32	-568.4463	0.0425	0.7592	0.7500	Cs	² A′	-568.4316	-568.3990	0.93 (C5)
TS _{2d-39}	458.94(i)	-568.3849	0.0379	0.7820	0.7504	C1	² A	-568.3752	-568.3415	0.35 (C5); 0.75 (N3)
39	126.60	-568.4092	0.0372	0.7605	0.7501	C_1	² A	-568.4019	-568.3652	0.14 (S1); 0.90 (N3)
TS _{2d-30}	156.97(i)	-568.4068	0.0379	0.7664	0.7501	C1	² A	-568.3973	-568.3632	0.55 (C5); 0.37 (C2)
TS _{2d-27}	390.04(i)	-568.3478	0.0353	0.7899	0.7506	C1	² A	-568.3416	-568.3066	0.33 (C5); 0.55 (S1) 0.36 (N3)
TS _{39-7,32}	455.96(i)	-568.4024	0.0352	0.7765	0.7504	C1	² A	-568.3979	-568.3602	0.19 (C4); 0.47 (S1) 0.57 (N3)
3d	456.98	-225.5996	0.0582	0.7511	0.7500	Cs	² A′	-225.5683	-225.5367	0.91 (C5)
TS _{3d-40}	451.13 (i)	-225.5312	0.0534	0.7921	0.7506	Cs	² A'	-225.5055	-225.4724	0.38 (C5); 0.80 (N3)
40	156.51	-225.5587	0.0533	0.7583	0.7500	Cs	² A′	-225.5343	-225.4989	0.98 (N3)
TS _{40-26,7}	645.24(i)	-225.5344	0.0495	0.7774	0.7505	C1	² A	-225.5141	-225.4783	0.37 (C4); 0.42 (N1)
TS _{3d-41}	373.81 (i)	-225.5327	0.0517	0.7694	0.7501	C1	² A	-225.5084	-225.4756	0.47 (C2); 0.49 (C5)
41	126.80	-225.5642	0.0527	0.7545	0.7500	C_1	² A	-225.5404	-225.5052	0.69 (C2); 0.19 (N3)
TS _{41-26,7}	560.22 (i)	-225.5350	0.0488	0.7667	0.7502	C1	² A	-225.5159	-225.4794	0.36 (C2); 0.44 (C4) 0.24 (N1)

	Lowest	Absolute	7\/DF	<s2> (an</s2>	nihilated)	Point	Flectronic	AG	лн	
Species	Harmonic frequency	energy (Hartrees)	(Hartrees)	Before	After	Group	structure	(Hartrees)	(Hartrees)	Spin density
3a	530.09	-225.5436	0.0575	0.7645	0.7501	C_{2V}	² B1	-225.5122	-225.4815	0.51 (C2); 0.35
TS _{3a-5}	431.30(i)	-225.4325	0.0526	0.7853	0.7506	C1	² A	-225.4072	-225.3748	(C4=C5) 0.99 (N1)
5	147.74	-225.4466	0.0527	0.7834	0.7504	C1	² A	-225.4224	-225.3878	1.07 (N1)
TS _{5-6,7}	520.16(i)	-225.3956	0.0482	0.7954	0.7510	C ₁	² A	-225.3769	-225.3406	0.59 (C2); 0.32 (C4)
6	402.52(i)	-131.9796	0.2775	0.7782	0.7501	C_1	² A	-131.9757	-225.9474	0.58 (C2=C4)
7						Conv	$^{1}\Sigma$			-
1b	619.20	-245.37124	0.0464	0.7607	0.7501	Cs	² A′	-245.3515	-245.3204	0.95 (C2)
TS _{1b-8}	651.69(i)	-245.3003	0.0414	0.7930	0.7509	C ₁	² A	-245.2860	-245.2539	0.83 (C4); 0.43 (C2)
TSu	778 28(i)	-2/15 3115	0.0412	0 7832	0 7504	C.	2Δ	-245 2975	-245 2655	0.68 (C5): 0.51 (C2)
Q	165 22	-245.5115	0.0412	0.7654	0.7504	C1	2 ^'	-245 2177	-245.2055	1.07(C4)
0	105.55	-245.5512	0.0419	0.7054	0.7501	Cs	~	-245.5177	-245.2854	1.07(04)
9	104.49	-245.3761	0.0425	0.7685	0.7501	Cs	² A′	-245.3624	-245.3276	1.08 (C5)
TS _{8-10,11}	643.43(i)	-245.2993	0.0379	0.7765	0.7505	C_1	² A	-245.2898	-245.2558	0.59 (C4); 0.24 (N3)
TS _{9-10,11}	402.12(i)	-245.3238	0.0387	0.7676	0.7502	C1	² A	-245.3152	-245.2786	(O1) 0.43 (C5); 0.53 (N3) 0.19(O1)
10	542.59	-167.9994	0.0104	0.7664	0.7501	C∞v	-	-168.0109	-167.9853	0.34 (01); 0.74
11	711.31	-77.3245	0.0275	0.0000	0.0000	D	$^{1}\Sigma_{g}$	-77.3159	-77.2933	(N3) -
2b	457.37	-568.3579	0.0430	0.7591	0.7500	D∞ _H Cs	²A'	-568.3427	-568.3101	0.83 (C2)
TS _{2b-12}	553.33(i)	-568.2931	0.0384	0.7806	0.7506	C1	² A	-568.2830	-568.2494	0.83(C4); 0.35(C2)
TS _{2b-13}	508.13(i)	-568.2888	0.0393	0.8033	0.7510	C1	² A	-568.2776	-568.2443	0.82 (C5); 0.38 (C2)
TS _{2b-15}	357.27(i)	-568.3275	0.0406	0.7602	0.7501	C_1	² A	-568.3152	-568.2817	0.81 (S1); 0.06 (C2) 0.13 (N3)
12	144.24	-568.3178	0.0385	0.7680	0.7501	C1	² A	-568.3089	-568.2728	1.08 (C4)
13	57.08	-568.3311	0.0397	0.7720	0.7501	C1	² A	-568.3215	-568.2849	1.09 (C5)
15	117.33	-568.3428	0.0415	0.7542	0.7500	C1	² A	-568.3307	-568.2953	0.99 (S1)
15a	110.71	-568.3226	0.0412	0.7567	0.7500	C1	² A	-568.3114	-568.2751	0.61(C5); 0.34(S1)
15b	303.60	-132.0482	0.0307	0.7624	0.7501	C1	² A	-132.0418	-132.0127	0.92 (C4); 0.31(C5)
TS _{12-14,11}	362.31(i)	-568.3036	0.0364	0.7724	0.7503	C ₁	² A	-568.2977	-568.2604	0.55 (C4); 0.59 (S1) 0.10 (N3)
TS _{13-14,11}	586.95(i)	-568.2869	0.0364	0.7812	0.7506	C_1	² A	-568.2815	-568.2438	0.54 (C5);0.38 (S1) 0.31(N3)
TS 15-16	Channelnot	found				C1	² A			(C5); (S1)
16	106.69	-568.3051	0.0381	0.7620	0.7501	C1	² A	-568.2969	-568.2605	0.85(C5); 0.17 (S1)
TS ₁₆₋₁₇	Channelnot	found				C1	² A			(H)
TS 15-17	842.20 (i)	-568.24049	0.0311	0.7662	0.7500	C1	² A	-568.2397	-568.2025	0.23 (S1); 0.89 (H)
TS 15-15a	1395.10(i)	-568.2686	0.0364	0.7543	0.7500	C1	² A	-568.2618	-568.2261	0.32(C5); 0.57(S1)
TS _{15a-15b,31}	294.77(i)	-568.2613	0.0359	0.7714	0.7503	C_1	² A	-568.2569	-568.2182	0.78(C4); 0.12(S1);
14	349.63	-490.9820	0.0081	0.7654	0.7501	Coov	² A	-490.9972	-490.9698	0.33 (N3); 0.83 (S1)
17	128.50	-567.74793	0.0297	0.0000	0.0000	Cs	¹ A'	-567.7468	-567.7123	-
3b	495.90	-225.5159	0.05919	0.7593	0.7500	Cs	² A′	-225.4835	-225.4521	0.93(C2)
TSahaa	740 70 (i)	-225 4248	0.0527	0.7892	0.7506	C1	² Δ	-225 3994	-225 3669	0.79 (C5) 0 42 (C2)
. 30-19	10.70(1)	223.7270	0.0527	0.7052	0.7500			223.3334	225.5005	
19	194.91	-225.4663	0.0521	0.7697	0.7501	C_1	² A	-225.4434	-225.4079	1.08 (C5)
TS _{19-20,11}	578.93 (i)	-225.4294	0.0495	0.7787	0.7506	C1	² A	-225.4099	-225.3732	0.54 (C5); 0.31 (N1) 0.48 (N3)

 Table 8S.
 Properties of reactants, intermediates, products and transition states of unimolecular decomposition pathways of dehydro-oxazole, thiazole and imidazole radicals at (U)M06-2X/cc-pVTZ level of theory

20	475.61	-147.1199	0.0194	0.7770	0.7502	Cs	² A″	-148.1242	-148.0962	0.68 (N1); 0.59(N3)
TS _{3b-18}	621.69 (i)	-225.4433	0.0539	0.7907	0.7508	C1	² A	-225.4169	-225.3841	0.41 (C2); 0.85 (C4)
18	90.37	-225.4782	0.0538	0.7664	0.7501	Cs	² A″	-225.4528	-225.4185	1.08 (C4)
TS _{18-20,11}	584.66 (i)	-225.4314	0.0501	0.7770	0.7505	C ₁	² A	-225.4112	-225.3747	0.54 (C4); 0.56(N1)
1c	620.83	-245.37171	0.0467	0.7604	0.7500	Cs	² A′	-245.3517	-245.3206	0.26 (N3) 0.9958 (C4)
TS _{1c-21}	319.12(i)	-245.3009	0.0414	0.7656	0.7501	C1	² A	-245.2868	-245.2545	0.42 (C4); 0.49(O1)
21	94.70	-245.3566	0.0412	0.7735	0.7503	C1	² A	-245.3443	-245.3092	0.71 (C5); 0.45 (N3)
TS _{1c-23}	396.96(i)	-245.2835	0.0401	0.7627	0.7501	C1	² A	-245.2711	-245.2379	0.90 (C4); 0.12(C2)
23	67.76	-245.3062	0.0397	0.7778	0.7504	C1	² A	-245.2955	-245.2601	0.79 (C4); 0.36 (C2)
TS ₂₁₋₂₂	1884.24(i)	-245.2714	0.0364	0.7587	0.7500	C1	² A	-245.2635	-245.2291	0.41(C2); 0.24(N3)
22	158.32	-245.3573	0.043261	0.7541	0.7500	C1	² A	-245.3425	-245.3080	0.19 (01) 0.68 (C2); 0.27 (01)
TS ₂₃₋₂₄	1041.73(i)	-245.2719	0.0366	0.7632	0.7501	C1	² A	-245.2636	-245.2295	0.73 (C2)
24	188.51	-245.3353	0.0412	0.7581	0.7500	C1	² A	-245.3222	-245.2880	0.67 (C5); 0.28 (O1)
TS _{22-25,26}	611.74(i)	-245.3282	0.0392	0.7695	0.7503	C1	² A	-245.3180	-245.2827	0.37 (C5); 0.27(C2)
TS 24-25,6	337.87	-245.2945	0.0355	0.7807	0.7507	C1	² A	-245.2894	-245.2518	0.47 (N3) 0.68 (C4); 0.29 (C2)
25	2263.37	-113.3188	0.0052	0.0000	0.0000	C∞v	1Σ	-113.3328	-113.3104	0.11 (C5) -
26	421.43	132.0326	0.0298	0.7744	0.7502	C1	² A	-132.0268	-131.9980	0.76 (C5); 0.55 (N3)
2c	479.06	-568.3543	0.0429	0.7609	0.7501	Cs	² A′	-568.3389	-568.3065	0.95(C4)
TS _{2c-27}	348.73(i)	-568.3067	0.0403	0.7661	0.7501	C1	² A	-568.2945	-568.2614	0.36 (C4);0.72 (S1)
27	110.47	-568.3177	0.0406	0.7546	0.7500	C1	² A	-568.3065	-568.2711	0.99 (S1)
TS26-29	318.10(i)	-568.2604	0.0373	0.7730	0.7503	C ₁	² A	-568.2523	-568.2173	0.82 (C4): 0.21 (C2)
29	66.97	-568,2648	0.0390	0.7545	0.7500	C ₁	² A	-568.2557	-568,2194	0.99 (S1)
TSaraa	1861 22/i)	-568 2302	0.0344	0 7582	0.7500	C.	2Δ	-568 2254	-568 1896	0.35 (S1): 0.34 (C2)
1327-28	121 51	-508.2502	0.0344	0.7562	0.7500	C1	2.4	-508.2254	-508.1850	0.33 (31), 0.34 (C2) 0.17 (N3)
28	715 01 (i)	-508.3118	0.0413	0.7560	0.7500	C1	2A	-568.2999	-508.2044	0.41 (51); 0.58 (C2)
IS ₂₉₋₃₀	/15.01(I)	-568.23747	0.0338	0.7672	0.7502	C ₁	² A	-568.2334	-568.1969	0.77(C2)
30	77.79	-568.2971	0.0386	0.7567	0.7500	C1	² A	-568.2888	-568.2519	0.56 (C5); 0.38 (S1)
TS _{28-26,31}	449.51(i)	-568.2355	0.0354	0.7807	0.7506	C1	² A	-568.2310	-568.1932	0.54(C5); 0.12 (S1) 0.53 (N3)
TS _{30-7,32}	443.19(i)	-568.2884	0.0366	0.7607	0.7501	C1	² A	-568.2819	-568.2453	(C2); (N3) 0.19(C4); 0.15(C5)
31	1332.74	-436.2102	0.0030	0.0000	0.0000	Ссоу	1Σ	-436.2277	-436.2039	0.34 (S1); 0.29(C2) -
32	389.98	-474.8932	0.0171	0.7700	0.7501	Conv	-	-474.8948	-474.8714	0.69 (S1); 0.52 (C4)
3c	566.21	-225.5157	0.0594	0.7593	0.7500	Cs	² A′	-225.4830	-225.4517	0.98 (C4)
TS _{3c-33}	821.89 (i)	-225.4240	0.0574	0.7623	0.7501	C1	² A	-225.3981	-225.3656	0.32 (C4); 0.27 (N1)
22	100 55	225 4725	0.0525	0 7915	0 7506	C	2 ^"	225 4480	225 4127	0.26 (N3)
33	100.55	-223.4733	0.0000	0.7615	0.7500	Cs	-A	-225.4469	-225.415/	0.48 (N3)
1533-34	2067.16(1)	-225.3802	0.0481	0.7621	0.7501	C_1	² A	-225.3608	-225.3258	0.46 (C2); 0.23 (C5) 0.31 (N3)
34	123.89	-225.4608	0.0540	0.7543	0.7500	Cs	² A'	-225.4354	-225.4003	0.78 (C2); 0.16 (N1)
TS _{34-26,35}	563.52 (i)	-225.4137	0.0494	0.7699	0.7503	C_1	² A	-225.3938	-225.3574	0.22 (C2); 0.39 (C5) 0.50 (N3)
35	419.07	-132.0326	0.0298	0.7744	0.7502	C∞v	1Σ	-132.0267	-131.9979	0.76 (C4); 0.55 (N1)

1d	588.46	-245.3676	0.0466	0.7628	0.7501	Cs	² A′	-245.3477	-245.3166	1.0229 (C5)
TS _{1d-36}	660.69(i)	-245.2839	0.0416	0.8039	0.7511	C1	² A	-245.2695	-245.2374	0.48(C5);0.80(N3)
36	170.56	-245.3138	0.0419	0.7608	0.7501	C ₁	² A	-245.3001	-245.2659	1.01 (N3)
TS _{1d-37}	400.08(i)	-245.3207	0.0414	0.7627	0.7501	C ₁	² A	-245.3065	-245.2744	0.71(C5); 0.30(C2)
37	147.67	-245.3509	0.0417	0.7566	0.7500	C1	² A	-245.3378	-245.3032	0.76(C2);0.14(N3)
TS 1d-21	419.31(i)	-245.2781	0.0386	0.7710	0.7502	C1	² A	-245.2675	-245.2339	0.56 (C5); 0.46 (N3)
TS _{36-7,38}	1139.33(i)	-245.2895	0.03801	0.7803	0.7506	C1	² A	-245.2804	-245.2452	0.29 (C4);0.63 (N3)
TS _{37-7,38}	490.42(i)	-245.3236	0.0382	0.7623	0.7501	C ₁	² A	-245.3148	-245.2789	0.33 (O1) 0.38(C4); 0.34(C2)
38	404.04	-151.9191	0.0190	0.7617	0.7501	Cs	² A'	-151.9235	-151.8956	0.74(C4); 0.29 (O1)
2d	442.32	-568.3466	0.0433	0.7636	0.7501	Cs	² A′	-568.3309	-568.2985	1.02 (C5)
TS _{2d-39}	567.17(i)	-568.2761	0.0386	0.7845	0.7507	C1	² A	-568.2657	-568.2321	0.39 (C5);0.80 (N3)
39	130.54	-568.3028	0.0381	0.7646	0.7501	C1	² A	-568.2945	-568.2581	0.13 (S1);0.97 (N3)
TS _{2d-30}	189.24(i)	-568.2939	0.0385	0.7648	0.7501	C1	² A	-568.2839	-568.2499	0.58 (C5); 0.32 (C2)
TS _{2d-27}	447.81(i)	-568.2382	0.0357	0.7954	0.7507	C ₁	² A	-568.2315	-568.1968	0.34 (C5); 0.57 (S1)
TS _{39-7,32}	550.88(i)	-568.2928	0.0358	0.7795	0.7505	C1	² A	-568.2877	-568.2501	0.40 (N3) 0.19 (C4); 0.49(S1)
3d	502.01	-225.5101	0.0593	0.7612	0.7501	Cs	² A′	-225.4776	-225.4462	1.02 (C5)
TS _{3d-40}	599.45 (i)	-225.4300	0.0539	0.7961	0.7509	Cs	² A′	-225.4036	-225.3706	0.43 (C5); 0.85 (N3)
40	157.51	-225.4621	0.0540	0.7618	0.7501	Cs	² A'	-225.4370	-225.4016	1.03 (N3)
TS _{40-26,7}	745.96 (i)	-225.4305	0.0503	0.7819	0.7507	C1	² A	-225.4093	-225.3738	0.41 (C4); 0.48 (N1)
TS _{3d-41}	475.55 (i)	-225.4281	0.0523	0.7732	0.7502	C1	² A	-225.4032	-225.3705	0.55 (C2); 0.50 (C5)
41	132.76	-225.4624	0.0534	0.7561	0.7500	C1	² A	-225.4378	-225.4027	0.75 (C2); 0.15(N3)
TS _{41-26,7}	625.76 (i)	-225.4305	0.0495	0.7693	0.7502	C1	² A	-225.4104	-225.3743	0.41 (C2); 0.47 (C4) 0.24 (N1)