Supporting information for:

The Reaction Mechanism of Polyalcohol Dehydration in Hot

Pressurized Water

Sergi Ruiz-Barragan, †,¶ Jordi Ribas Ariño, ‡ and Motoyuki Shiga *,†

[†]CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba, 277-0871, Japan

 $\ddagger Departament \ de \ Química-Física \ i \ CERQT, \ Universitat \ de \ Barcelona, \ Diagonal, \ 645, \ 08028-Barcelona, \\$

Spain

¶Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan

E-mail: shiga.motoyuki@jaea.go.jp

Figure S1: The change along the HDO(H₂O)₄H⁺ minimum energy paths, Channels 1 (blue) and 2 (red), obtained from the PBE/SV(P) calculations. (a) The relative energy, and the structural variables (b) ϕ , (c) n_7 (solid line) and n_8 (dashed line), (d) r_{27} (dashed line) and r_{28} (solid line), and (e) d. The barriers of the S_N1 channel (blue) and the S_N2 channel (red) are 58 and 45 kcal/mol, respectively.

Figure S2: The change along the HDO(H₂O)₆H⁺ minimum energy paths, Channels 1 (blue) and 2 (red), obtained from the RIMP2/SV(P) calculations. (a) The relative energy, and the structural variables (b) ϕ , (c) n_7 (solid line) and n_8 (dashed line), (d) r_{27} (dashed line) and r_{28} (solid line), and (e) d. The barriers of the S_N1 channel (blue) and the S_N2 channel (red) are 66 and 41 kcal/mol, respectively.

Figure S3: The change along the HDO(H₂O)₆ minimum energy path, Channels 2 (red), obtained from the PBE/SV(P) calculations. (a) The relative energy, and the structural variables (b) ϕ , (c) n_7 (solid line) and n_8 (dashed line), (d) r_{27} (dashed line) and r_{28} (solid line), and (e) d. The barriers of the S_N2 channel without and extra proton is 57 kcal/mol.

Figure S4: The evolution of three collective variables, (a) ϕ (b), n_7 and (c) d, of the respective walkers obtained from the PBE/PW metadynamics calculations of aqueous solution. All the walkers are shown in purple, except Walker 2 highlighted in blue which has first lead to the reaction. Walker 2 crossed the transition state at 92 ps marked by the dotted line. In (a), the region in which $S_N 2$ can occur ($135^\circ - 225^\circ$) is marked by dashed lines. In (b), the values of neutral HDO ($n_7 = 1$) and protonated HDO ($n_7 = 2$) are marked by dashed lines. In (c), the restriction wall used in metadynamics at d = 2.5Å and the region of transition state d = 0.0Å are marked by dashed lines.

Figure S5: Three-dimensional free energy surface of (a) x = 4 and (b) x = 6 in the HDO microsolvated model with respect to d, ϕ and n_7 , obtained from the PBE/SV(P) metadynamics calculations. The views are in a direction parallel to n_7 .

Figure S6: The change of structural variables N_7 (top panel), ϕ (middle panel) and r_{27} and r_{28} (bottom panel) along a backward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_7 indicates the position of an excess proton. It is red when O_7 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S7: The change of structural variables N_7 (top panel), ϕ (middle panel) and r_{27} and r_{28} (bottom panel) along a backward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_7 indicates the position of an excess proton. It is red when O_7 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S8: The change of structural variables N_7 (top panel), ϕ (middle panel) and r_{27} and r_{28} (bottom panel) along a backward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_7 indicates the position of an excess proton. It is red when O_7 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S9: The change of structural variables N_7 (top panel), ϕ (middle panel) and r_{27} and r_{28} (bottom panel) along a backward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_7 indicates the position of an excess proton. It is red when O_7 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S10: The change of structural variables N_7 (top panel), ϕ (middle panel) and r_{27} and r_{28} (bottom panel) along a backward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_7 indicates the position of an excess proton. It is red when O_7 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S11: The change of structural variables N_8 (left panel), r_{27} and r_{28} (upper right panel), and ϕ (bottom right panel) along a forward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_8 indicates the position of an excess proton. It is red when O_8 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S12: The change of structural variables N_8 (left panel), r_{27} and r_{28} (upper right panel), and ϕ (bottom right panel) along a forward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_8 indicates the position of an excess proton. It is red when O_8 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.

Figure S13: The change of structural variables N_8 (left panel), r_{27} and r_{28} (upper right panel), and ϕ (bottom right panel) along a forward trajectory launched from the point near the transition state obtained from the PBE/PW molecular dynamics calculations of aqueous solution. The color of N_8 indicates the position of an excess proton. It is red when O_8 is protonated, green when a water molecule hydrogen bonded to HDO is protonated, and blue otherwise.