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1 Computational methods

Numerical calculations of the non-homogeneous and anisotropic
diffusion equations were carried out using the Implicit Finite dif-
ference method for 1D cases and combined with the ADI method
for the 2D anisotropic case. The Thomas algorithm was employed
to solve the discrete concentration equations1,2. For the 2D para-
metric study, which contains thousands of runs for each case, we
implemented a GPU high-performance solver using the implicit
parallel algorithm for voltammetry3.

The mesh was created using an expanding grid to provide suf-
ficiently small differences next to the walls and the target sur-
face. The near-wall hindered diffusion problem is very sensitive
to meshing and the convergence of the result varies for different
sizes of particles due to the diffusion coefficient profile close to
the wall. Therefore, a careful convergence test was carried out
to evaluate the minimum difference (10−7 · rs) and the expansion
factors (1.06 in both r and z directions) required for achieving an
accurate simulation in the near-wall hindered diffusion simula-
tion for rp > 5nm.

1.1 Accuracy and convergence tests

Initial tests were carried out using non-hindered cases to provide
a full agreement (within 0.6 % for all time) of the mass balance
equations with theoretical transient flux towards the disc and a
sphere4. The expansion factor parameter, the minimum differ-
ence, and the tunnelling rate coefficient (ν) for the non-hindered
case were varied until the result for the flux converged to the
value for the simplified model of no-tunnelling but fully adsorb-
ing surface. In the parametric study, which contains 4000 runs to
find the steady state, a global convergence approach was used as
follows: The simulation was run and then fitted to the function to
find the coefficients (Eq. ??, ??). Thereafter, the mesh parameters
were varied until the coefficients of the fitted equation remained
constants.

∗ Corresponding Author.
a Department of Chemistry, Physical and Theoretical Chemistry, Oxford University,
South Parks Road, Oxford OX1 3QZ, United Kingdom.

1.2 Implementation
All simulations were implemented using C++. For the paramet-
ric study, the parallelization of ADI solver was implemented using
NVIDIA CUDA. The processor was a Xeon E5-1650, 3.2GHz, and
16GB of RAM. The GPU is a NVIDIA Quadro K4000 (Kepler ar-
chitecture). Least squares fittings using the ’general-model’ fit
function as well as post-processing procedures were carried out
in Matlab software.
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2 Diffusion to a finite sphere

2.1 Non-hindered diffusion case

The solution of diffusion towards a sphere or an hemi-sphere can
be found through solving the diffusion equation in one dimen-
sional radial coordinates system:

∂c
∂ t

= D(
∂ 2c
∂ r2 +

2
r

∂c
∂ r

) (1)

with boundary conditions of a full adsorbing surface on the sphere
with a radius rs, and bulk concentration is assumed at infinite
distance:

t ≥ 0, r = rs, c = 0 (2)

t ≥ 0, r = ∞, c = c∗ (3)

Changing the variable:
u =−cr (4)

gives the equation
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It requires the introduce of a new variable:
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and the diffusion equation becomes:
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This gives the solution to be of the form:
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(8)

Integrating and applying the bulk boundary condition at infinity
gives:
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Using the boundary condition of a fully adsorbing surface at r =
rs, we get:

a =−( 2√
π
)rc∗ (11)

and substituting back:
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Finding the flux:
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where
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,
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Expanding the Taylor series:
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Since z = r−rs√

4Dt
= 0 at r = rs
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) (17)

2.2 Hindered diffusion steady-state case

Substitution of the function into the diffusion equation, in radial
coordinates yields:
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∂ r2 +D0e−Brs/r

(
2
r
+

Brs

r2

)
∂c
∂ r
(18)

We can simplify this expression by limiting our analysis to the
steady-state of the system:
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By reducing order and substituting the boundary condition c(x =
0, t) = 0 and c(x = ∞, t) = c∗, the homogeneous ordinary differen-
tial equation directly solves to:

c =
c∗

eBrs/r−1

(
1− eBrs/r

)
+ c∗ (20)

and the steady state flux at the sphere to:

Jss =−Dtrial(r)
∂c
∂ r
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]
(21)

3 Anisotropic hindered diffusion towards a
disc:

In cylindrical coordinates, the hindered diffusion is represented
only by the normal stresses for the coordinates r and z. The gradi-
ent of the scalar field of concentration in the anisotropic diffusion
equation gives the vector:

∂c
∂ t

= ∇ · {D(
∂c
∂ r

r̂+
1
φ
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∂φ

φ̂ +
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ẑ)} (22)

and the diffusion coefficient is represented by a second rank ten-
sor:

D = D0

σrr σrφ σrz

σφr σφφ σφz

σzr σzφ σzz

 (23)
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Fig. 1 The residuals map (Er) of the fitted function for the sphere (a) and
the disc (b) cases, Jss( f it)− Jss(simulation).

Recall the divergence of a vector field (A) in cylindrical coordi-
nates:
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In axial symmetry ∂A
∂φ

= 0. By combining the above equations we
get:
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The D ⊥ and D ‖ are functions of the distance z from the elec-
trode, or the wall adjacent to the electrode (at z=0). Therefore,
∂σrr/∂ r = 0 and the diffusion problem becomes:
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4 Residual maps of the flux towards a
sphere and a disc

We discuss here the result of the fitting, and we provide the resid-
ual maps for further accuracy of the flux estimation that can be
used along with the approximated functions. We showed in the
paper the approximate steady state functions in the case of parti-
cles impacting a sphere and a disc:

sphere : J f it
ss,D(r) = 4D0πc∗rs(0.57e−2.34 rp

rs +0.43e−0.21 rp
rs ±Er) (28)

disc : J f it
ss,D(r) = 4D0c∗rd(0.57e−3.37 rp

rs +0.43e−0.26 rp
rs ±Er) (29)

The functions, with an r-square value of 0.996 for sphere and
0.943 for disc, also were used as a method to find global conver-
gence of the spatial mesh for the numerical solution as discussed
in the computational methods. The local goodness of the fitting
is shown by the residual map (Er) (Er = Jss( f it)−Jss(simulation))
in figure 1a for the sphere and in figure 1b for the disc. The
functions provide a good fitting in most ratios of rp/rs, within a
value of ±0.08. The fit shows that at small targets and small par-
ticles the deviation of the simulated flux from the fitted function
is relatively large Jss( f it)− Jss(simulation) ∼ −0.08 which under-
estimates the flux. This deviation is found to be partly due to
the tunnelling distance which becomes important for very small
particles and targets; For very small targets the diffusion layer
thickness becomes comparable to the tunnelling distance, thus
small particles are being consumed before they loose a significant
fraction of their hydrodynamic mobility, and a deviation from the
behaviour of the exponential decay is observed. It is found that
increasing artificially the β value in the tunnelling function (P) by
an order of magnitude results in a maximum residual of ±0.05.

The functions along with the residual map can also be used
directly by experimentalist for the prediction of the hindered dif-
fusion effect on the flux of particles and for an estimation of the
number of impacts.
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