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I. 1. Detailed derivations of eqns (19), (27).

Derivation of egn (19). After differentiation of egn (10) with respect to time and combination with eqns
(10)-(11), we obtain

‘”gt(‘) W Zﬂt(‘) —ke[(1+ 2) 3w (1)~ 23, (1) + kil (1)]. (81)

, where we used the definition ¢ (t)=¢ (t)+¢C(t) for the total concentration of intracellular metal

species (free and complexed) at t. Substituting the expression of Jy,(t) given by eqn (8) and further

introducing the mass transfer resistant Ry :1/(DM,0utfe|a‘l) , eqn (S1) leads to
dJy (t . _1| dey (t . _1f defg (t
Dull), i (43, ()il <t>)—RT1[—“;t( Vit 1+ )¢ (t)—ﬁal[—“gt( Vet (14 2)ch (t)H=o-
(S2)
In addition, after combining egn (13) with egn (11), it comes

ng[cM(g,t)—cM(g,O)}dfz—a[ jJ dv+—(¢uM(t) ") 1+1I¢“ ].(53)

After substitution of egn (17) into egn (S3) and subsequent derivation with respect to time, we further
obtain
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& {—ch (&.1) ke (1+2)[om (&) —cu (5,0)]}d§=a2{ke M'O_Ju(t)_ke.[[’wu(V)_ké‘%T(V)JdV}

{ ;
(S4)
Using eqgn (16), eqn (S4) provides
_Jj Sf) —Q{—dcgt(t) ke (14 4) iy (t)] —24,'0, [dcﬁgt(t) ke (1+4)cy (t)J +
(S5)

[ )= Kadl (v) v +kero =0

o!—.n—r

where 7, depends on the initial conditions as specified by eqn (20)

dey (t .
CM—()+ ke (1+4)cy () between egn (S2) and eqn (S5), we finally obtain

Eliminating the term

3 a
AT@u(t) (1) 4 p gy Kekd g g )T SM W) Ly ayes ) |-
Jp o dt 3 3 Km{ dt

t
—iI[ )—kidl (v) by —keto =0 (S6)
UO

where we used the relationship 7| = —KMﬂa_l(Q1+2§22) Yand Az =7 —7g =J ;R derived from

eqn (22) in the main text. Introducing the dimensionless variable Z(t)zj(;( (v)1J )dv and

t) Jt;Zu v)dv defined in the main text, eqn (S6) can be rewritten in the form

—keAZ (1) + kgD (1) —kero =0 (S7)

ATZy + 2 (keAA7 1) ~KGATD{ 7| —L o ke (1+2) 2y
(1-2) 1-%

defr (t) Ky .

, where we used the relationships J,(t)/J; =2, cjy(t)=KyZ/(1-Z;) and it ( )2
1-3,

After rearrangements, eqn (S7) finally becomes
(1-%) [k (ro+/12(t))—k§[q>T(t)—thTArﬂJrzt(1—zt)[(1—zt)(1—,1keAr)+kerL(1+/1]
(S8)

Yo =
‘ Ar(1-% Y -7,

, which is eqn (19) in the main text.
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Derivation of egn (27). Rewriting egn (S2) in terms of Z(t)z.[;(\]u(v)/\]j)dv and @ (t)

t— .
= .[0 ' (v)dv , we obtain after arrangements

o
=]
o [Z*
—~~
—
N

L rken | 2Bt A B tga] [, (S9)
(1-2) =%

=—ke (1+ )Ty (t)+ {Zn {Bn_1 +

, where we used the relationship RyJ; = 8;'Bn 1K, recalling that Bn™ =Ry /Rg, I = KykintKy

and Rg =1/ (kinKn B, ) - Equation (S9) identifies with eqn (27) in the main text.

I. 2. Demonstration of eqns (23), (24).
Demonstration of egn (23). Under the electrostatic conditions detailed in the main text (

w(asr<ry)=<y>and y(r, <r<r,)=0), the time constant z_ defined by eqn (21) reduces to**

r 1 (v + Vo j (S10)
L™ w o | Vsoft T/ |
SaKpKint % Bap

Further introducing the critical volume fraction ¢ =keV) 1(SaKnkintBa) in egn (S10), we obtain the

dimensionless form of 7, provided by
kerp =" (\7+<o‘l) (S11)

, which is eqn (23) in the main text with V' = SVeos 1V,

Demonstration of eqn (24). The time constant z¢ is provided by the expression*
7e = Vot +Vp /(982 ) + KintKaVy / (e0Dyyoue ) 62 (1-70) + (1= @)/ Ba =726 1 2]} (SakingK) - (S12)
with a=alr,, yo=r /1, and y, =alr,. Equations (S11) and (S12) hold at sufficiently low volume

fractions ¢ and for constant electrostatic potential inside the soft surface layer of the microorganism and

zero potential at the electrolyte side of the interphase. Using eqn (S10), eqn (S12) can be rewritten

i {1+ Bn? (1::/1(0) (a(l— 7o) +(882) " (1-a)~7a /2)} . (S13)

1/3

Realizing that r, = rc,(p‘ll3 and y, =ag¢~°, it comes

1 f - 3
rEer{u Bn 1(1+$/l¢){(5’3a) 1(1—%j+%( —5401’3)}} (S14)
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In addition, with help of egn (9) it can be shown that under the electrostatic conditions of interest in this

-1
work fg reduces to fy = {(gﬂa )_1 [1—EJ+E(1—¢1/3)} . Substituting into eqn (S14) and expanding
) To

the result for ¢ <<1 that holds for dilute suspensions of microorganisms (case treated in the main text),

¢1/3/2
1+(s8,) (1 /a—1)

we obtain egn (24) with { ~1- . The value of ¢ is close to unity as the term

1+(e8,) (1, /a—1) satisfies 1+(£8,) (r,/a—1)21. Accordingly, for the sake of mathematical

1+(eh,) (1 1a—1)

derivation of egns (40) and (41) in the main text.

simplification the ¢ -dependent term

involved in ¢ was discarded for the

Il. 1. Demonstration of eqns (29)-(31) and detailed expressions of the ratio
o (K*) ey (K™ =0).
Demonstration of eqns (29), (30). In the equilibrium regime reached at t — oo, eqgn (25) provides
% () =@ () + 5 () =0 while eqn (26) yields @ (oo):(l+ K*_l)ﬁf (o). Combination of these
two equations further leads to

Df (0) = (1+K) 2 (). (S15)
Substituting egn (S15) into eqn (27) in the limit t — oo where (o) =0 and dty; (0)/dt=0, it comes
after rearrangements

e = BaChp” (S16)

, where we used the relationships Ak, = kgpgi (1+ K*_l) =kg (1+ K*) derived from eqgn (18) and from

K*=kipd /k3, and the equality ¢ =KyZ()/(1-Z;(0)). As argued in the text, eqn (SL6)

legitimates the systematic applicability of the (thermodynamic) BLM formalism at t— 0. Further

substitution of eqn (S15) into egn (19) taken at t — oo yields after simplification

[1- 3 (0) ]| keto +keAZ(20) =k (e0) |+ 2y (o0) [ 1~ ¢ (s0) + ker (1+2)] = 0. (S17)
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In the following, we express % () and <DT(oo) as a function of cy;”, recalling that surface and bulk M

concentrations are interrelated via egn (S16) in the here-examined equilibrium regime. The integration of

eqn (11) between t =0and t — oo leads to
A" () = 10 = 355 (o) ~ (ke + ka8 ) Xia + kxS (S18)
H o0 © M o0 o - - - .
, where we introduced xy; :.[0 ¢ (t)t and x¢ :.[o ¢ (t)dt . Similarly, the integration of eqn (12)
between t =0and t — oo provides
* Vi oo *_ 00
5 (0) 45 = ki pg' i —kaxe . (S19)

Solving eqn (S18)-(S19) in Xy ¢ , We obtain

¢UM<oo)—¢uM'°—Jsz<oo>+[1+“j J(¢3<oo)—¢3’°)
koK™t . (S20a,b)

A (0) =" + 4 (0) - 457~ 342 ()
ke

X

©8

Xy =—

Using eqn (S20), it is straightforward to show that il () =ke (x,i’}l + xéo)/.]fj is defined after reduction

by

A )= (o)) 2) |

T () =~ (1+K")| -Z(0) -

(S21)

Equation (12) at equilibrium further yields ¢7u°(oo)/¢7uM (o0)= K™ while egn (10) in the equilibrium limit
leads to @ (o) = 3y (0)/ ke = J5Z; () / kg . Substitution of these expressions into eqn (S21) gives
O (o) = (14 K"+ (1+ K {2 (e0) ~ kg ¢ (o) 1+ K" (1411 2) ] (S22)
, Where we introduced the constant o, = [¢L']V"0 + ¢S'O (1+1/ /1)]/ Jy; - From eqn (S22), we infer
(1+K7)2(0) = @7 (20) = =(1+ K" g + (14 K" g 5 () [ 1+ K™ (1411 2) . (S23)
Realizing that the term koAZ(o0)—kj®' () in egn (S17) can be rewritten in the form
kg [(1+ K*)Z(oo) —o' (oo)} , it comes after combining egn (S23) and eqn (S17)

ASZ, +BE;,, +C=0 (S24)
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, Where we wrote Zt oo :Zt(oo) for shortening notations, and the coefficients A, B and C are here
defined by A= —[1+/1+ K*(1+ /1)} . B=1+A+K"(1+A)+kery (14+4)—ke(7o—Acy) and
C:ke(ro—ﬂao). The second-order polynomial equation (S24) in X% ,, can be transformed into a
second-order polynomial expression in terms of the variable c,?,’lw/KM with proper use of the

equivalence ¢y / Ky =24 , /(1— Zt,w) . After algebraic arrangements, the final result reads as

2 1+K* 7,- A« 7, — Aa
a’OO/K 1 0 0 a,oo/K 0 0:0. S25
(e km) { ey +TL(1+/AL):|(CM M)+1L(1+/1) (529)

As 7,— A, is always strictly negative, the discriminant of the quadratic eqn (S25) is positive. After

calculation, it is demonstrated that the physically-relevant solution c,"{‘,'lm of eqn (S25) is then expressed by

1/2
. ., 2
e’ 1Ky S I P T S . S P 2kez|; 1+&j+ ke—Tl-* 1-*o (S26)
2 7 ket KeT 1+K T 1+K T

,With g5 = (79— Aag )/ (1+4) (<0) and 7, defined by egn (20). Equation (29) in the main text directly
follows from eqn (S26) using the equilibrium expression (S16). The time constant —z, in egn (S26)

simplifies after some developments into

Kt = Ko (Qlc*,\)lo + 2ﬁ;192c§‘;,°) — 450, (S27)

Using the relationship 7| = —KMﬂa_l(Ql +2Q,) it comes

Ke sty = kg“ CiOAT, — Keri c30 — g0 (S28)
ulRT Km

1
Further using the equality RyJ; = 8;Bn 1K, and the definition x, = [KM /(ﬁac*,\;lo)} , we finally
obtain
Ketlo = koT| [(1— re 171 ) AT XoBN — c&0 1 Ky } —gro (S29)

, which is eqn (30) in the main text.

Demonstration of eqn (31). Starting from eqn (29), the ratio cy;” (K*) I ey’ (K* = 0) can be formulated

according to

S6



1/2
=% — 2
[14 40 14K 14K 1+2keig[1+ﬂo RLSN P
*,00 N keTL keTL 1+ K N 1+ K N

Cm
- = (S30)
ci” (K" =0) 1) 1 2|
—(1+’u°+)+ 1+2ke7 (1+’u°j4{ker|_ (1—”’}}
L ket ) ket L L
Under the peculiar condition 1+Kg 4, +ke7 =0, egn (S30) simplifies into
L2
—IZ*+(1+ K*) 1- 2_*+(1+2kf’f°j

Chh~ 1+K 1+K

= (S31)

i (K" =0) 2 otty (L+ketto) ]

, While for 1+Kkg 1y + Ko7 #0, egn (S30) can be rewritten in the form

,l/2
_[1+ker|_(l+,uo/r|_ﬂ‘IZ*+(1+ K*)[H2k97L(1+#°/TL)+(keT'-(1ﬂO/TL)j }

ci 1+K* 1+K"
C;:}IOO(K* :0) - ) 1/2
—[l+ker|_(1+,uolr|_)] 1+o|1- Ake HoTL 5
[1+ KeT| (1+ Ho /TL):|

(S32)

, Where we introduced o =%1 for 1+ker (1+ /7. )20. The complex stability constant Kj),

introduced in 8115 corresponds to the value taken by K* such that the equation
e’ (K* = Kl*/z) =Cyy° (K* = 0) /2 is verified. For situations where 1+ Ky, + Ko7 =0, this equation can

be solved with use of egn (S31) and, after developments, we obtain the following solution

Kijp = 3\fker (1+kery ) /2 (S33)

, which is eqn (31a). For situations where 1+Kkgu,+Kkez #0, using egn (S32) the equality

Ve (IZ* = Kf,z) =cy” (K* = 0) /2 leads after lengthy algebra and simplifications to the result

3ké2r|_,uo L4kt (L+po I 7L)
2

Kij2 = (S34)

4keZZ'L/Uo
[1+ Ko7 (1+ ol T )]2

[l+ kerp (1+ 440 /‘L’L)] 1+ 0'\/1—

, which identifies with eqn (31b).
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Il. 2. Physical interpretation of the term (1+ K*) I (ke ) -

As indicated in the main text (811.5), egns (11)-(12) considered at t-—»>o provide

75 () gM ()= K* and q?uT(oo)z(1+ K*)ﬁac*,\)f’o (KM +ﬁac’,’\‘;,°°). The latter expression can be
rearranged in the form ¢uT(oo)=ke‘1Jj(1+ K*)ﬂachK,(All(H Bacyy” ! KM). In addition, eqn (23) is
equivalent to ker| =kg [Vsoﬁ +( ,Ba(p)_lvp}/(KHkimSa) so that Kk can be expressed as a function
of 7, according to KKint :|:Vsoft +(,Bago)_1vp}/(8ar|_). In turn, substituting the latter expression in

the above equation defining ¢ (=), we obtain

1+ K* _ Sacp¢J (OO) y 1+ ﬂac*l\)loo / KM
keTL CK}IOO 1+\7(0

(S35)

, where we further used the relationships ¢, = /V, and Jj = kin KKy, . The quantity Sacp¢uT(oo) in
eqn (S35) corresponds to the amount of (free and complexed) metal forms accumulated at t — oo in the
overall (intracellular) volume occupied by the microorganisms present at a cell number density c,. The
term (1+\7¢>)_1 ~1-V¢ corrects C, determined on the basis of the volume V|, of a microorganism for
the presence of a soft peripheral corona where metals are not accumulated after internalisation. The term
1+ Bacyy” Ky accounts for the finite number of internalisation sites at the membrane surface with the

limits ,Bac",{hw/KM <<1 and ﬂac’,{;fo / Ky >>1 corresponding to the Henry and saturation adsorption

regimes, respectively. In turn, the quantity (1+ K*)/(kerL) is analogous to a dimensionless

thermodynamic constant of an equilibrium reaction (t — o) pertaining to the conversion of bulk free

metal ions into internalized free and complexed metal forms in the overall microorganism suspension. In

the (unrealistic) situation where V — oo, which applies for microorganisms with very thick surface layer
compared to the typical dimension of their cytoplasm, we have (1+ K*)/(kerL) — 0 meaning that the

accumulation of metals is thermodynamically unfavorable, which is physically consistent. In addition,

increasing K™ at fixed ko, displaces the reaction toward the formation of MLs complexes. Conversely,

increasing ke, at fixed K™ favors the excretion of internalized free metal forms and thus leads to a
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- T

. . . % o0 1+K SaC 00

decrease in g (o). In the saturation regime B,ciy / Ky >>1, we have ——— = fad p¢“_( ) whereas
keTL KM (1+ (D)

1+ K" _ SaCpth ()

the result s
efL Cy (1+Ve

applies in the Henry regime ﬂac",(,'l"o /Ky <<1.
Il. 3. Formal demonstration of the relationship cy,” (K* >> 1) I ey’ ( K*= 0) —0.

After simplification of egn (S2) taken in the limit t — c under conditions allowing for a neglect of the
intracellular MLs complex dissociation step (condition satisfied for K* >>1), we obtain

a,oo

* CM

A I:\)T‘]u b
1+ A4 Ky +¢

— (e - Aae) =0 (S36)
M

, where we used eqn (7). After some algebra, eqn (S36) can be transformed in the polynomial equation

2
(x84 (1_ X" +Lsnlj_ X"~ 0 (S37)
1+2

*

, where we defined the dimensionless x** =c$” /Ky, and x™* = B,c5y” / Ky - The equilibrium egn

(S37) (valid for K* >>1) must be satisfied irrespective of the value taken by Bn! and 2 and it must

further be consistent with the thermodynamic Boltzmann relationship x®* = x™% (or c,"{‘,’lw = ﬂac;{;lw)

that necessarily applies at equilibrium (see main text, §85). The only solution satisfying these conditions is
a,oo

x&® =x™* =0, which demonstrates that bulk metal concentration at t —o and at K* >>1 is 0, i.e.

o (K™ >>1)/ ey (K =0) > 0.

II. 4. Detailed asymptotic behavior of eqn (29) for K* <<1 and K* >>1, and details on the

behavior of eqn (31) at k.7, <<1 and k.7 >>1 (Table S1).

The Taylor series expansions of eqns (S31)-(S32) with respect to K* and 1/ K" are useful for
apprehending the behavior of c*,{;lw(lz*)/c*m‘”(lz*:o) at K*<<1 and K" >>1, respectively. After
calculations with help of Mathcad software (version 15, PTC), we obtain the results collected in Table S1

and written in reduced forms. The expressions of cK;,w(IZ*)/c",(;lo (defined by egn (29)) in the limits

K*<<1 and K*>>1 are simply obtained from the results given in Table S1 using the relation

v (K*)/CKAO =cyy (K*)/CKAOO (K* = O)x C*MOO(K* = O)/c*,\;,0 where cy;” (K* = 0)/0;:)'0 is provided by
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%00 (7% x 1 4 1 1 4 H
P (K*=0)/cid=—d-|1+5204—— |+ 1+ 2Kory | 1420 4] kory | 1-£2 S38
M( )M > ( 0 keTL] L eL[ TL){eL( Tﬂ (S38)
, which is derived from eqn (29) taken at K* =0.

Similarly, the limiting behavior of Ky, at ko7 <<1 and kyz; >>1 is described by the Taylor series
expansions provided in Table S1 where we discriminate between cases Kquy >-1, Kozy =—1 and
Koty <—1. The limiting expressions given in Table S1 corresponds to the curves denoted as (a) and (b)

in Figures 2A-2B.

*::{_‘
M
#® o0 [ oAk
- ] _
K <<1: CI\'I (‘Fx 0)
[ onE e
for 1+kpy +kor =0: M -
) C{ffc K*:O) :'Jkeﬂo(l*keﬂo]
- *EL K*
forl+Kesto +hery 20: C*_I(C}L_O) - : 12
M \ -V . |, _ 4—:
_*- [1—.](92'[_(1—,110 / rL}_{]__ "eﬂorL ‘ —
K >>1: L [1 +hatp (1+ 44/ z-L.‘J_|
* o0 _ P n -
[ . O N \“‘eﬂo“*'l‘eﬂo )
for 1+k, p4 +krp =0: &) N =
N =
* o0 . 2
fOI’ ].+ke% +kETI_ #0: ‘(x_c'\_{* - A § -]\e«uor]'_ —
- K =0 , 2
ext | ) . ‘ o Wi _ l
K[]+kefr_(1+ﬂoﬁfl)| 1+o 1- _ —|
d [l+kerL(1+;10‘-’rL)_|'_l J
T
1/2
- —_ e )
for ety > -1 E’:=1—keﬂo—7llf;‘:l"m
0
- . _ 3 : - k
ketp, <<1: Jforku=-1: K, :kil + ;‘_}‘TL ketp >>1: K, =1*kefr_*%u°
+ /7
_forf’cc,u0 <-1: I?l'2=_1 Ijeﬂo_ll:kkzﬂokerj_
- e~

Table S1. Taylor series expansions for the ratio c“,{,'lw(lz*)/c’,t;'w(lz*zo) at K'<<1 and K*>>1

(indicated) and for Ky, in the limits ker; <<1 and k.7 >>1 (indicated). Results are valid up to first

order terms in K™ or 1/ K™ , ker_ or 1/ (ke ).

Il. 5. Evolution of the ratio c;;” (K*)/c*,\)lOO (K* = 0) with K* at different k,r| (Figure S1).
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Figure S1. Dependence of the ratio Cyy” /c’,;;lw(K* =0) on K*/Kjj, at various values of kgr| (indicated).

Simulations are given for Kezy =—5/2.

I1l. 1. Derivation of eqn (32) valid for strong MLs complexes ( K* >>1).

For strong intracellular MLs complexes, eqn (27) becomes after rearrangements

oM () _ y (14 )k (1) +
dt
A -1
a -1 ——Bn
i dew (1) 1+ Bn 5 |+ke (L+2)cp () 1+—1*;1’1 (S39)
dt (1+Cf{‘/| (t)/KM) 1+cy (1) /Ky

, Where we used Z; = cfy (t)/ (KM +Cy (t)) . The general solution of eqn (S39) can be written in the form

cip () =Cre KAty ¢, (1) e (BNt (S40)
, with C; a scalar independent of time and C, (t) is a function of time defined by

A

dC, (t)
dt

1 Bnt
= Ky S e A1 dy(t)),,  Bn 5 | +ke(L+2)y(1)| 14224 (S41)

dt (1+y (1)) 1+y(t)
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, Where we introduced the normalized surface metal concentration y(t) = Ciy (t)/ Ky . Integration of eqn

(S41) provides after calculation

- . - 1 (e ke (1+4)v 1
el e ﬂ)t{y(t)_Bn 1[1+y(t)‘ke(l”)e ey i y(”)}””(w)

The constant C; is obtained from the initial boundary condition C; = cyy’ —C,(0) with C,(0) defined

from eqgn (S42) according to C, (0) = KMﬂgl{y(O)— Bn‘l{1 )1/(0)}} . The steady state transport
+
condition given by eqn (10) and considered at t = 0 further provides
% — * y 0
P - Kty (0)= 3yRe L0 gt (S43)

1+y(0)
, Where we used eqns (7)-(8) at t =0. In turn, it comes C; = K,\,l,é";an‘1 —keRT¢5uM’O after realizing that

the product J Ry can be rewritten Ky pf; !Bn~t. After rearrangements, C, reduces to
— -1
C,/ c’,’{,’,o = xngn‘1 (1—¢UM'°) where we recall that X, = [KM /(,Bac;:;loﬂ . Finally, we obtain

C*M (t)/CK}lO _ X{)an'l (1_5“M,o)e—ke(1+,1)t N

t Kk (1+4
com® goal 1, (L+a)e A 8 L A )y, (S44)
° ] Ky cy(t) (V)| 1+4 Ky
1+-M 074 M)
Km Km

, Which is eqn (32) in the main text.

Ill. 2. Derivation of the expressions for the surface and bulk metal concentrations for K* >>1
in the regime of strong and weak affinity of M for the internalisation sites (eqns (33)-(34) and
eqns (35)-(37), respectively). Simplifications of eqns (37)-(38) for situations where k, =k, =k_
and k_ =k (1+1).

Regime of strong M affinity for the internalisation sites in the limit K* >>1 (eqns (33)-(34)).
In this regime, we have Ky, <<cfy (t) atany time t so that J,, (t)=J. Simplifying eqn (S6) accordingly

and discarding the ML dissociation terms not relevant in the K* >>1 limit, it comes

a
dCl\(;It(t) + ke (1+ ﬂ)Cﬁ/l (t) — _K_MI:]_+ keﬂ,t + ke (To — ﬂAT):I (845)
L
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After simple algebra, the integration of eqgn (S45) leads to

a,0 _ _
G (1) Ky = i +|:1+ke(1+/1)(10 Zmr)] e_ke(1+/1)t_1+ke(1+/1)[ro+/12(t AT)] (s46)
Kwm Ker (1+4) ke (1+4)

, which is egn (33) in the main text. To derive cy (t), we now use eqn (S44) (or egn (32)) in the limit

Jy(t)=Jy orequivalently y(t)/(1+y(t))~1 with y(t)=cfy(t)/ Ky . It comes after simplification
i (1) = KBz Bt —keRyg?)e e (444 [ﬁa‘lcﬁﬂ (t)+ﬁ KMﬁa‘an‘l(l— e‘ke(“)tﬂ (547)

In addition, from eqns (8) and (28) we easily derive that the initial M transport flux Jy, (0) is given by

1/2

1+ Bn‘l(l—au'\"'o) .
Xo {1+ x5 [1+ Bn_l(l—gZuM'o)J}

4x;'Bn [1— A0 (1+ xglﬂ
1—

S| 112 (s48)

Im(0)735 =xBn| 1+

This expression identifies with that derived in Ref [1] in the limit ;ZUM’O =0 where the dimensionless

metal surface affinity parameter and bioconversion capacity of the microorganism noted A and B in Ref

*

[1], respectively, are defined here by A= xgl and B= xngn‘l. At t=0, the condition J,(0)=J,
applies and eqn (10) then simplifies into Jy, (O)IJJ =1—ZUM'°. The latter expression is consistent with

eqn (S48) provided that xgl <<1 and xngn‘1 (1—%\"’0) <<1. Simplifying eqgn (28) in these limits, we

obtain c,"i‘,'lol(ﬁac;;,o):l or, equivalently, Ky 82 Bn™t —kRrg"® = Rrdp (0)=0. In turn, eqn (S47)

becomes

BaCin (1) Kpy = [cﬁ‘,l (t)/ Ky +ﬁ Bn~L (1— e ke “*“‘ﬂ (S49)

, Which is eqn (34) in the main text.

Regime of weak M affinity for the internalisation sites in the limit K* >>1 (eqns (35)-(37)).

In this regime where the condition Ky, >> ¢ (t) applies, the uptake flux (eqn (7)) can be linearized
according to J, (t)/Jg =cfy (t)/ Ky = y(t). Equation (S6) taken in the extreme K™ >>1 then reduces

to

dy(t) , 1+kery (1+4)—ke2Ar y(t)+KeTo Kot [ y(v)dv=0. (S50)
dt 7E e T
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Equation (S50) leads to the second-order differential equation in =(t) = j;(J u(v)/ ij)d V= J; y(v)dv

1+Kker + AKeTE %, +ke_/12(t):_kefo . (S51)

TE TE TE

Zit +
The characteristic polynomial equation associated with egn (S51) admits the discriminant A that reads
after rearrangements
Ar2 = (L+kory ) +2Korg (Kot —1) 2+ A2 (Kezg ) (S52)
The quantity Aré is always >0 irrespective of the value of A, which can be shown after evaluation of
the discriminant of the second order polynomial egn (S52) in 4. Let us first examined cases where
Aré > 0. Then, the general solution of egn (S51) can be written in the form
S(t)=ae ™t rae™ -7 /2 (S53)

, Where a are independent of time and k.. (>0) (with k_ =k ) are the two kinetic constants defined by

4ﬂkeTE
[1+ ke (7 +A7g )]2

Kotg = —[1+ke (7 + A7) ] —11\/ - /2. (S54)

a, are determined from the boundaries £(0)=0 and %(0)=y(0), which provides after evaluation

a,0
o Z{CM I Ky +kyro 1 4

Tk } . Using the relationship y(t) =2, we finally obtain
+ — R

CGISYERDY Aje_kjt

j:+1_

(S55)

c&0 [ Ky + ket I A
’ Wlth Ai = —0!+k+ = iki[ M M +TO

Ky T } which corresponds to egn (35) in the main text. The
+ T R

expression for cyy (t) in the weak M affinity regime is obtained from eqn (32) after substitution therein of

-1
the linearized expressions (1+ y(t))_lzl—y(t) and y(t)(l+ﬁy(t)j ~1-y(t)/(1+4) with
+

y(t)(z e (1)/ Ky ) <<1 defined by eqgn (S55). After lengthy calculation and algebraic arrangements, we

obtain the reduced expression
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ABn
* 1 A. _ - 1 (_k J s
U P P PR e Y
M R P J=t- 17—

(S56)
, where we used the relationship J; Ry = KMﬂa‘an‘l. Equation (S56) is identical to eqn (37) given in
the main text. Finally, the value of cﬁ,'lo is obtained from application of eqn (10) at t=0 with

3,013 =cB0 Ky, e ( ﬁ—lao) 3580 Ky —ke™®  which  leads  to

-1 -
O/KM (1+Bn ) (x0+ M’OBn_l) as indicated in the main text.

Analysis of the case k, =k_ =k,.

Let us now address the degeneracy case where AzZ =0. This situation is achieved for kyr =0 and
Akeze =1 with the result k, =k_ =k, = rgl, which is inferred from eqgn (36) in agreement with Figure
4. Then, the pendant of eqn (35) (or eqn (S55)) is cfy (t)/ Ky = (A, + Bot)e_kOt with A, = CMO / Ky, and
Bo =Ko (cﬁ;,o I Kpm +Ko7o //1). In addition, it is can be shown after some algebra that the equivalent of

eqn (37) in the limit k, =k_ =k, = rEl is provided by

A, - B—
ﬂaCK/I(t) n (1"‘/1) Ko _(1+/1)5M,0 e—ke(l+/1)t+
K 1+,1 ke !
ke (1+2)
aBnt(
1+ 4 [1_I<O/IJ k.Bnt k
+ | Ao+ B (1+Bn 7t —= 5 (1= ke (L+2) —ko Jt) [re 7" (S57)
1-_ fo (ke (1+2)—ko)
ke (1+4)

In turn the expression of the transport flux Jy (t) for k. =k_ =k, = rgl is obtained from egns (8) and

(S57) together with cfy (t)/ Ky = (A, + Bot)e e, which yields
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Ab_
«_ 1 ke(1+/1)_ko_ —M,0 | ks (L+2)t
JM(t)/Ju_1+/1 K (1+2)g," |e +
ke (1+2)
Mo[ —k"J
ke (1-[k —k
A kA kke’z +By |t et-fle+4) 2°]t) et (s58)
1-———0 (ke(1+2) ko)
ke (1+4)

Analysis of the case k_ =kg(1+4).
We now examine cases where k_ =k, (1+ 1), and the conditions leading to such a situation are detailed

below (in particular it is shown that k, can not take the value kq(1+4)). Then, realizing that

A (e[ke (1e4)k- ]t —1) /[ ke (1+2)—k_ ]~ At, substitution of egn (35) into eqn (32) now provides

/”LBn'l(l k+j
* -1 -1 v
facu(t) _ Bn A () g | 1Byl a)a tee A gy 1A ket Akt
KM 1+4 1_k7+ Bn-l _ki“'
ke (1+ 1) ke (1+2)
(S59)
, and the metal transport flux expression now reads as
_ ke
I ()37 =2 a +(1+/1)[A_(1—ket)—¢7uM*0} et At KA ookt
1+4 1— k+ 1— k+
ke (1+4) ke (1+4)
(S60)

Evaluation of the conditions leading to k_ =kg (1+1).
Let us first show that the condition k, =k (1+ 1) is never met. Finding the critical value A taken by

A = Zkgrg such that k, =ke (1+4) comes to solve the equation k,7g =kezg + A in A where k 7¢ is
defined by eqn (36). After calculation, we obtain Ag = kerg (Kerg —Kerp ) (14 ket —Kerg). We
exclude here the case zg =7, (i.e. Bn™*=0) for which the kinetic constant kg (1+4) is not operational

in the practical limit ZUM'O =0 (ESI, part I11.6). As k,zg <1 over the whole range of A (see Figure 3A),

A, must satisfy the condition kozg +A; <1. In addition, the condition A; >0 further imposes that
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(kezp <)kezg <1+ker . Substituting the above expression defining A, into the inequality

kezg +Ag <1, we get 131—(kerE)_1. This inequality is never verified because k.zg >0, so that there
are no conditions leading to k, =k¢(1+4). We can now attempt finding the value of A. such that
k_=ke(1+2). Adopting the same procedure as above, we again obtain the expression
A =kgrg (ketg —Ker ) T (1+kery —kezg). However, A, must now satisfy the condition
KeTg + Ac 21+ker as k_zg 21+kor over the whole range of A=A4k.zg (see Figure 3B).
Substituting this latter inequality into the expression of A, we obtain (ko7 <)kerg <1+kez| , Which is
also consistent with the necessity to have positive values of A . In turn, the relationship k_ =ke (1+ 1) is

verified at the value A =/, (specified below) provided that the (kerL,kerE) couple is in line with the

condition (ker <)Kezg <1+Ker : k_zg then reduces to k_zg = (1-7 /7 )_1 and the critical value of

A = A/ (kerg ) where k_ =k (1+ 4 ) is given by A, =[ke(rE —r,_)]_l—l.

lll. 3. Limits of eqns (35), (37) at 1 — 0.
It can be shown that A, involved in eqn (35) and (37) satisfies the limit A+|/Ho ~ —Ko7o /(14 ke )

while A | ~ 20 Ky +keo / (L+kery ),  where we used the limits Kel, 0 =0,
k_|/1_)0 ~ (1+ker )/ g . Replacing these limits into eqn (35) we obtain
Cﬁ/l (t) _ CaI%/I (0) + KeZo eft/rd _ KeZo (S61)
KM KM 1+ keTL 1+ keTL

, Where 74 =7 /(1+ ker| ). Equation (S61) correctly corresponds to the result derived in Ref [2] for

microorganisms in the absence of intracellular MLs formation and in the weak affinity limit. The

following limits can be further shown

k_
A KA ‘ Ltk 1 ¥ A o7 (0)/ Ky
1429 ko Irke(r—7e) " ke(1+2) ;57| K 1+ke (7 — 7€)
ke (1—{—),) A—0 ke (1+2') 10

, S0 that substitution into egn (37) leads after some arrangements to

a

a 1+ke (7L —7)
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Bn1(1+k
K gt (CRA(O)/KM+ keTo ]1+ N (rkeri) )| Ky keto (S62)
a 1+keT|_ 1+ke(Z’L—TE) ﬂa 1+keTL

This expression correctly compares with the result obtained in Ref [2] for cases where intracellular MLs

formation is not operational.

lll. 4. Evolution of k _rg with Ak.rg at different k.7, (Figure S2).

10?2 10" 10° 10" 10° 10°
A=Ak, T
Figure S2. Dependence of the (dimensionless) kinetic constants k,7g on AKe7g = A at various values of Kez|

(indicated). Dotted lines represent the evolution of k,zg at low and large AK.7g = A and the corresponding
analytical Taylor-series expressions are indicated in Figure 3A.

lll. 5. Physical interpretation of the timescale 7 /(k;’{p\sli TE + keTL) , and comments on Table 1.

Using eqns (21)-(22), zg can be rewritten in the form

rC
tg =Rg| 47 [ £2BAE1S, - 35QBn |, (S63)

a

In the following we define the Warburg-like element Z,,, with value

I'-C
Zy =47 [ &2 BAE1 S, — 35BNt (S64)
a
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After algebraic rearrangements, Zy, can be expressed according to
Zy =(re /70 )(1+V o)V, [ (Sa0) (S65)

, Where we used eqgns (21)-(22). Equation (S65) corresponds to that provided in the main text (see caption

rC
Table 1). In addition, the dimensionless product K.z =47rkeRSI§2,B§d.§/Sa (egn (21)) can be viewed
a

as the ratio between the M membrane transfer resistance Rg and the excretion resistance
I -1

Re.p =Sa 47zkej§2ﬂ§d§ . Under the electrostatic conditions specified in the main text (i.e. 1/x << &
a

), Re, can be rewritten as R, ,=Rep/(1+Vp) with R, =S,/ (kevp) and V = BVeort IV . The

ey
timescale 7 =rE/(k§p\S/irE +ker|_) corresponds to (k_)_1 in the limit ko >> (L+ker )/ 7 (see

main text). It can be written in the following form

, or, equivalently,

Zur. (S67)

Equation (S67) is analogous to that defining the characteristic time for discharging a (Warburg-like)

element with value Zy, across an interface with charge transfer resistance Ry = RsRe,, /(Re,, + Rs)
with IQS =Rg/ k;‘pgi e. Ry is nothing else than the equivalent resistance for the resistances Rg and
Re,, setin parallel, in agreement with the electrochemical circuit schemed in Table 1 (case (k_)_1 for
the limit kpg' >>(1+kez )/ g ). Considering the inequality k}pgize >> (1+ker )(>1) defining the
range of applicability of the limit (k_)_1 ~ Ty, it is easy to verify that Iis IRg <<l and Rg , >> IQS (see

Table 1), the latter inequality stemming from k;‘,o\s/i TE >> (1+ Rg/ Re#,) >Rg/Rg , . Stated differently,

fast MLs formation kinetics leads to a decrease of the membrane transfer resistance Rg and

microorganisms display a stronger propensity to accumulate M than excrete internalized metal ions. In
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turn, fast MLg formation facilitates the intracellular sequestration of metal ions in the form of MLs
complexes.

Following the above methodology, it is possible to evaluate expressions of charge transfer resistances

associated to 1/k,. In the limit k;fp\sli <<(1/2+ker. )/ 7 (see Table 1), Figure 3A shows that

1
(k,) " ~zg(1+kery )/ A with A=Akezg, or, equivalently, (k+)_1z(k;p\5/i) (1+kezL). As the

-1
inequality k;pg' << (1/2+ker) )/ g (< (1+ker )/ z) applies, we infer (k;‘p\sli) >> 7g (1 ke )

ie. (k,)'>>rg (see Table 1). In addition, (k,)" can be writen in the form

-1 x \.
(k+) er(kap\S/'rE) (1+ker|_),0r

1+ keTL

EAYA
kaps'7e

(k.) " =RsZy (S68)

, Which corresponds to the time for discharging the Warburg-like element Z,,, across a charge transfer
resistance defined here by Ry = Rg(1+ kerL)/(k;“p\S/i rE) >> Rg (see Table 1). This means that a sluggish

MLs formation (k;,o\S/i << (l/2+ker|_)/rE) effectively leads to increasing the M membrane transfer

resistance  (blocking effect). In the extreme of fast intracellular MLs formation (

kapal >> (1/2+ker )/ 7 (> (1+ker )/ 7¢)), we have 17k, ~7¢ (1—kez'|_/A)_l (see Figure 3A) or
-1 -1

1/k, ~RsZy [1—(k§p\s/i TE) Rs /Re, 4 . Using k3p§'7e >>1+ker > ko7 (=Rs/Re,, ) that holds in

the limit examined, it comes 1/k, = RgZy 1+(kaps'rE) Koz, |, which corresponds to the time for

discharging the Warburg-like element into a charge transfer resistance that identifies with

-1
Rg {1+(k;‘p\3/i rE) ker,_} ~ Rg, in line with the result reported in Table 1. The absence of any excretion

contribution in this charge transfer resistance agrees with the limit cyy” / cyy” (K* = 0) — 0 discussed in

811.5 for K* >>1 (Table 1 applies for such strong MLs complexes), recalling that excretion is required to

obtain a finite non-zero M bulk concentration at equilibrium.’
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As stated in the main text, it is possible to evaluate from Table 1 which of the timescale (k, )_1 or
(k_)_1 is operational in the regime of slow and fast intracellular MLs formation (left and right column of

Table 1, respectively). In the regime of slow MLs formation, the timescale (k+ )_1 is much larger than

the free M transfer time zg between bulk and intracellular volume (see Table 1 and Figure 4).
Accordingly, it is the only (k_)_1 contribution that will be operational in defining kinetics of M bulk

depletion and overall uptake. On the opposite, the membrane transfer resistance associated with (k_)_1 in
the limit of fast MLs formation significantly facilitates M uptake-depletion compared to that relevant for
the (k, )_1 case. In line with this, the processes subsumed in the (k, )_1 component thus now play a key

role in governing/limiting M accumulation and bulk depletion kinetics.

Il. 6. Simplification of eqns (37)-(38) for 4° =0.

ke (1+A)t 50

Obviously, in the limit of fast intracellular MLs formation reached at 4 — o« we have e
in egn (37) and the time constant (1+ ﬁ,)_llke is then not operational in determining M uptake/depletion
kinetics. For 2 — 0, we showed in §l11.3 that eqn (37) reduces to

. y K
o (1) = —kee ™! K gp-t| To *TECM (0)/ K +Rr o+
ﬂa 1+ ke (TL —TE)

Bn1(1+k
K gt/ (cﬁﬂ(o)/KM+ Keo j1+ N (rker) | K ko (S69)
a 1+keTL 1+ke(T|_—TE) ﬂa 1+keTL

In addition, under the condition Ky, >>c}, (t) marking the validity of eqn (S69), the time constant z,
defined by eqn (20) may be written for 2 — 0 in the form 7, = —cﬁ‘,’lorE I Km —¢UM'0 (1/ Jo+ kteRT) :

This equation is derived after combining the expression zg =—KMﬂa’1[Ql (1+ Bn’1)+ZQZJ given in
the Supporting Information of our previous work® with the relation

-1 -
&0/ Ky =(1+ Bn‘l) (x0+ M’OBn_l) valid for Ky >>cfy (t) (see ESI, part I11.2). In turn, for

a
. _ +71eCym (0)/ K
M0 =0, we obtain 75=-ct0 /Ky and K 1| T * 7€ v (0)/ K +RrAM0 =0. The
a 1+ke(T|_—TE)

prefactor of the e term in egn (S69) becomes zero so that the time constant 1/k, is not operational,
as stated in the main text.

S21



IV. 1. Time-dependence of M transport flux at the membrane surface under conditions of
Figure 5 (Figure S3) and time-dependent ratio c), /CK/]O under conditions of Figure 7 (Figure
S4).

0'5 _______ o ___ o ___ ]
/ Jkin_ Ju
o0
04} ]
= =
ry T 03] J
= =
— —
> o2} ]
H E
q
01} ]
10"
ol ] 0 A=0
107 10" 10° 10’ 1072 10" 10° 10’
t/t; t/t

Figure S3. Evolution of the dimensionless ratio  Jy (t)/(Jy(t)+Im(t)) (A) and

Jin (t)/ (Ikin (t)+ Iy (t)) (B) with time t normalized by the M transfer timescale 7, at various values of 1
(indicated). Jy; and J, are defined in the main text and Jyn (t) =dgC (t)/dt = ki pdi g (t) - kigC ()
corresponds to the net kinetic flux pertaining to intracellular MLs complex formation. Model parameters: as in

Figure 5 of the main text. The dotted lines in (A) and (B) represent the limits J, =Jp and Jyin =Jy,
respectively.
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10° 10’
t /T

Figure S4. Evolution of the ratio Cy /C*,\,'l0 versus t/zg for various values of the dimensionless M reciprocal

affinity 1/ X, = Ky /(ﬁac;{ho) (indicated). Model parameters: as in Figure 7 of the main text.

IV. 2. Expressions of CK;,OOICK;,O and k,/k_ as a function of ¢/¢* and details on the
corresponding asymptotic behavior at ¢/¢p" <<1 and ¢/¢" >>1 (Table S2). Derivation of
egns (39)-(41).

Equation (29) defines the ratio cy;” /¢y, according to

. . 2
voo 0 L) [t AR IVR T 2Ker () o || KeTL [ Ko (S70)
a8 keTL keTL 1+ IZ* a8 1+ K* a8

, With  Kozty = Ko7 [(l—rE/rL)AEOXOBn—cmolKMJ—EUT’O (eqn (30)) which we rewrite in the form
Ke iy = —KoT| %o {1—A60 [1—4’/(1+\7¢>)]}—(/?UT'0 where we used egn (24) valid for ¢ <<1. In turn we
obtain s, /7 =X, {1—AEO [1—(/(1+\7¢)]}—5UT'0 / (kez, ). Further using eqn (23) that defines kez,_ as
a function of ¢, we finally derive u,/7 =—X, {1—AEO [1—;/(1+\7go)]}—¢7uT'0/[go*(go‘l +\7)]
Substitution of that latter expression and of ker| =(o*((p_l +\7) (egn (23)) into eqn (S70) provides the

general relationship that determines the evolution of c”‘,\;,(’o /c”‘,\;,O as a function of the microorganism volume
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fraction ¢ in the suspension. Then, after solving the equation c’,t;lw((pl,z)/c’,(;lo =1/2, we obtain eqn (39)
that defines the cell volume fraction ¢ needed to achieve a two-fold reduction of the bulk M

concentration at t — oo under the condition AT, =0. Using Mathcad software (version 15, PTC) and after
simplifications, we further obtain the Taylor series expansions reported in Table S2 for ¢y /cyy at

plo*<<1and @/ ¢* >>1. For the sake of simplicity, we derived these expressions in the limit where the

term V¢ is so small compared to unity (which is generally the case in practice) that it can be discarded in
the mathematical developments.

As detailed in the main text, the kinetic constants k. (>0) given by eqn (36) are fully defined upon
upon the only specification of kez| and Ak.zg (: k:p\sli TE) and the same holds for the ratio k, /k_. The

expressions of k; and k,/k_ as a function of cell volume fraction ¢ are simply obtained after

substituting into egn (36) the relationships defining the dependence of ker| and Ak.zg on ¢, i.e.
ker, =@ (¢—1+\7 ) (which is eqn (23)) and Akerg :4¢*(¢—1+\7 )[1+ an—1/(1+\7¢)] Using
Mathcad software (version 15, PTC), the first derivative of the ratio k, /k_ with respect to ¢ can be

easily computed. Then, the position and the value of the maximum in k, /k_ can be determined from the

value in @ where this derivative is zero. After lengthy simplifications and neglect of the ¢ -dependent

component of £ (see justification in ESI, Part 1.2), the expression defining ((p/(p*) where k. /k_ is
max

maximum can be written in the form given by eqn (40) and the value (k, /k_)max can be arranged

according to eqn (41). Finally, we derived the Taylor-series expansion of the ratio k, /k_ at ¢/¢" <<1

and ¢/ ¢" >>1 and after arrangements we obtain the results in reduced form collected in Table S2.
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#00 , %0

— ‘™M ' Mm
p/p <<1:
O o 1_ag(1-0)+ L K] &7 %ol 1-40(1-4)]
P TG x, [1+K 1+xg[1-45,(1-¢) |
/ * .
@/ @ >>1: L N
. x| 1-(1+K%) @R [1-az,(1-2)]-(1+K*) g1°
G 1 o g ro[ (1K) & [1-az,(1- 1K) &
*0 o = | B —
A -ro(I-K)[l—11+f<“) acll ==K &
k+ -"l‘ k_
A1+ Bt
o/o"<<l: K (144 )_«E,.
k [14.(1*:&?'1)7@
Wol 1+ A1+ 2B 1) ]|
42| 1+¢Bnt - 1[ > £(1 2 )
. 12 Ly (0 A * E
- 1—(1-
/@ >>1: k (_ ’{)121— — . 22 L with Z:&ﬂ:
ko1+(1-2) z[1+17¢*(1—;.}: (1-p)"* 4 [147;0*(1—;.):

Table S2. Taylor series expansions for the ratio c",{;f’o /c”,\‘;l0 at o/ " <<1and ¢/ ¢"* >>1 (indicated, valid with

discarding term in V@) and for k, /K_ in the limits ¢/ 9" <<1 and ¢ /" >>1 (indicated). Results are valid up
to first order terms in ¢ /" or ¢* / @ .

IV. 3. Dependence of c,;”/cy on ¢/¢p* and K* at various values of AT, and 1/x, (Figure
S5).
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Figure S5. Evolution of the ratio CK;[” /c*,\}l0 with microorganism volume fraction (normalized by ¢* = Rs/Rg
with R, =S, /(keVp) and Rg =1/ (kintKp/Ba)) and with intracellular dimensionless MLs complex stability
constant (K*). Model parameters: ¢* =10, V =4[ %=0, a/ry ==, =1 with (A): AT, =0, X, =1,
B): AT, =0, X, =5x10?, (C): AG, =0, X, =5x10°, (D): AT, =1, X, =5x10?.
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