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I. 1. Detailed derivations of eqns (19), (27). 

 

Derivation of eqn (19). After differentiation of eqn (10) with respect to time and combination with eqns 

(10)-(11), we obtain 
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, where we used the definition      T M c
u u ut t t     for the total concentration of intracellular metal 

species (free and complexed) at t. Substituting the expression of  MJ t  given by eqn (8) and further 

introducing the mass transfer resistant  1
T M,out el1 /R D f a , eqn (S1) leads to 
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In addition, after combining eqn (13) with eqn (11), it comes 
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After substitution of eqn (17) into eqn (S3) and subsequent derivation with respect to time, we further 

obtain 
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Using eqn (16), eqn (S4) provides 
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, where o  depends on the initial conditions as specified by eqn (20).  

Eliminating the term 
     M
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d

1
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   between eqn (S2) and eqn (S5), we finally obtain 
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, where we used the relationship  1
L M 1 22aK       1 and L E u 1 TJ R         derived from 

eqn (22) in the main text. Introducing the dimensionless variable     u u0
/ d

t
t J J     and 

   T T
u0

d
t

t       defined in the main text, eqn (S6) can be rewritten in the form  
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, where we used the relationships  u u/ tJ t J    ,    a
M M / 1t tc t K    and 
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After rearrangements, eqn (S7) finally becomes 

             

 

2 T T
e o d e e L

2
L

1 1 1 1 1

1

t t t t t
tt

t

k t k t k k      

 

                      
  

  (S8) 

, which is eqn (19) in the main text.  
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Derivation of eqn (27). Rewriting eqn (S2) in terms of     u u0
/ d

t
t J J     and  T t  

 T
u0

d
t
    , we obtain after arrangements 
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, where we used the relationship 1 1
T u MaR J Bn K    recalling that 1

T S/Bn R R  , u H int MJ K k K   

and  S int H1 / aR k K  . Equation (S9) identifies with eqn (27) in the main text. 

  
I. 2. Demonstration of eqns (23), (24).  

Demonstration of eqn (23). Under the electrostatic conditions detailed in the main text (

 oa r r      and  o c 0r r r    ), the time constant L  defined by eqn (21) reduces to1,2 
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Further introducing the critical volume fraction  e p H int/ a ak V S K k    in eqn (S10), we obtain the 

dimensionless form of L  provided by 

  1
e Lk V        (S11) 

, which is eqn (23) in the main text with soft p/aV V V .  

 
Demonstration of eqn (24). The time constant E  is provided by the expression1 

          E soft p int H p M,out o a a int H/ / 1 1 / / 2 /a aV V k K aV D S k K                    (S12) 

with o/a r  , o o c/r r   and a c/a r  . Equations (S11) and (S12) hold at sufficiently low volume 

fractions   and for constant electrostatic potential inside the soft surface layer of the microorganism and 

zero potential at the electrolyte side of the interphase. Using eqn (S10), eqn (S12) can be rewritten 
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Realizing that 1/3
c or r   and 1/3

a  , it comes 
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In addition, with help of eqn (9) it can be shown that under the electrostatic conditions of interest in this 

work elf  reduces to    
1
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. Substituting into eqn (S14) and expanding 

the result for 1   that holds for dilute suspensions of microorganisms (case treated in the main text), 

we obtain eqn (24) with 
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 . The value of   is close to unity as the term 

   1
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o1 / 1 1a r a    . Accordingly, for the sake of mathematical 

simplification the  -dependent term 
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 involved in   was discarded for the 

derivation of eqns (40) and (41) in the main text.    

 

II.  1.  Demonstration  of  eqns  (29)‐(31)  and  detailed  expressions  of  the  ratio 

   , ,
M M/ 0c K c K       .  

Demonstration of eqns (29), (30). In the equilibrium regime reached at t  , eqn (25) provides 

     T c
u 0t t         while eqn (26) yields      

1T c
u1t K 

     . Combination of these 

two equations further leads to 

      T 1t tK      .   (S15) 

Substituting eqn (S15) into eqn (27) in the limit t   where   0tt    and  Md / d 0c t   , it comes 

after rearrangements  
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, where we used the relationships    1
i

e a dS 1 1Vk k K k K 
        derived from eqn (18) and from 

i
a dS /VK k k   , and the equality     ,

MM / 1a
t tc K      . As argued in the text, eqn (S16) 

legitimates the systematic applicability of the (thermodynamic) BLM formalism at t  . Further 

substitution of eqn (S15) into eqn (19) taken at t   yields after simplification  
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In the following, we express     and  T   as a function of ,
Mc  , recalling that surface and bulk M 

concentrations are interrelated via eqn (S16) in the here-examined equilibrium regime. The integration of 

eqn (11) between 0t  and t  leads to  
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u u u e a M d cS

VJ k k x k x                 (S18) 

, where we introduced  M
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dx t t
    and  c
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dx t t

   . Similarly, the integration of eqn (12) 

between 0t  and t  provides  
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u u a M d cS
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Solving eqn (S18)-(S19) in M,cx , we obtain  
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Using eqn (S20), it is straightforward to show that    T
e M c u/k x x J       is defined after reduction 

by 

      
      M M,0 c c,0

u u u uT

u

1 1 /
1 K

J

    




      
        
 
 

.   (S21) 

Equation (12) at equilibrium further yields    c M
u u/ K      while eqn (10) in the equilibrium limit 

leads to      M
u u e u e/ /tJ k J k       . Substitution of these expressions into eqn (S21) gives  

             T 1
o e1 1 1 1 1 /tK K k K                      (S22) 

, where we introduced the constant  M,0 c,0
o u u u1 1/ / J         . From eqn (S22), we infer 

              T 1
0 e1 1 1 1 1 1/tK K K k K                     .   (S23) 

Realizing that the term    T
e dk k       in eqn (S17) can be rewritten in the form

     T
d 1k K      
 

, it comes after combining eqn (S23) and eqn (S17)  
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 , where we wrote  ,t t     for shortening notations, and the coefficients A , B  and C are here 

defined by  1 1A K        ,      e L e o o1 1 1B K k k              and 

 e o oC k    . The second-order polynomial equation (S24) in ,t   can be transformed into a 

second-order polynomial expression in terms of the variable ,
MM /ac K  with proper use of the 

equivalence  ,
M , ,M / / 1a

t tc K
    . After algebraic arrangements, the final result reads as 
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As o o   is always strictly negative, the discriminant of the quadratic eqn (S25) is positive. After 

calculation, it is demonstrated that the physically-relevant solution ,
M
ac  of eqn (S25) is then expressed by  
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, with    o o o / 1        0  and o  defined by eqn (20). Equation (29) in the main text directly 

follows from eqn (S26) using the equilibrium expression (S16). The time constant o  in eqn (S26) 

simplifies after some developments into 
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Further using the equality 1 1
T u MaR J Bn K    and the definition   1
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o M a M/x K c

 
 

, we finally 

obtain 
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, which is eqn (30) in the main text. 

 

Demonstration of eqn (31). Starting from eqn (29), the ratio    , ,
M M/ 0c K c K        can be formulated 

according to 
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Under the peculiar condition e o e L1 0k k    , eqn (S30) simplifies into 
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, while for e o e L1 0k k    , eqn (S30) can be rewritten in the form 
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, where we introduced 1    for  e L o L1 1 / 0k    
  . The complex stability constant 1/2K  

introduced in §II.5 corresponds to the value taken by K  such that the equation 

   , ,
1/2M M 0 / 2c K K c K          is verified. For situations where e o e L1 0k k    , this equation can 

be solved with use of eqn (S31) and, after developments, we obtain the following solution 

  1/2 e L e L3 1 / 2  K k k       (S33) 

, which is eqn (31a). For situations where e o e L1 0k k    , using eqn (S32) the equality 

   , ,
1/2M M 0 / 2c K K c K          leads after lengthy algebra and simplifications to the result 
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, which identifies with eqn (31b).   
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II. 2. Physical interpretation of the term     e L1 /K k  .  

As indicated in the main text (§II.5), eqns (11)-(12) considered at t   provide 

   c M
u u/ K      and      T , ,

u MM M1 /a aK c K c          . The latter expression can be 

rearranged in the form      T 1 , 1 ,
u e u M MM M1 / 1 /a ak J K c K c K             . In addition, eqn (23) is 

equivalent to    1
e L e soft p H int a/ak k V V K k S       

 so that H intK k  can be expressed as a function 

of L  according to    1
H int soft p a L/aK k V V S      

. In turn, substituting the latter expression in 

the above equation defining  T
u  , we obtain 
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, where we further used the relationships p p/c V  and u int H MJ k K K  . The quantity  T
a p uS c    in 

eqn (S35) corresponds to the amount of (free and complexed) metal forms accumulated at t   in the 

overall (intracellular) volume occupied by the microorganisms present at a cell number density pc . The 

term   1
1 1V V 
    corrects pc  determined on the basis of the volume pV  of a microorganism for 

the presence of a soft peripheral corona where metals are not accumulated after internalisation. The term 

,
MM1 /ac K    accounts for the finite number of internalisation sites at the membrane surface with the 

limits ,
MM / 1ac K     and ,

MM / 1ac K     corresponding to the Henry and saturation adsorption 

regimes, respectively. In turn, the quantity    e L1 /K k   is analogous to a dimensionless 

thermodynamic constant of an equilibrium reaction ( t  ) pertaining to the conversion of bulk free 

metal ions into internalized free and complexed metal forms in the overall microorganism suspension. In 

the (unrealistic) situation where V  , which applies for microorganisms with very thick surface layer 

compared to the typical dimension of their cytoplasm, we have    e L1 / 0K k    meaning that the 

accumulation of metals is thermodynamically unfavorable, which is physically consistent. In addition, 

increasing K  at fixed e Lk   displaces the reaction toward the formation of MLS complexes. Conversely, 

increasing e Lk   at fixed K  favors the excretion of internalized free metal forms and thus leads to a 
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decrease in  T
u  . In the saturation regime ,

MM / 1ac K    , we have 
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 applies in the Henry regime ,

MM / 1ac K    .  

 

II. 3. Formal demonstration of the relationship     , ,
M M1 / 0 0c K c K        .  

After simplification of eqn (S2) taken in the limit t   under conditions allowing for a neglect of the 

intracellular MLS complex dissociation step (condition satisfied for 1K  ), we obtain 
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, where we used eqn (7). After some algebra, eqn (S36) can be transformed in the polynomial equation  
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1
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 (S37) 

, where we defined the dimensionless , ,
MM /a ax c K   and , ,

MM /ax c K    . The equilibrium eqn 

(S37) (valid for 1K  ) must be satisfied irrespective of the value taken by 1Bn  and   and it must 

further be consistent with the thermodynamic Boltzmann relationship , ,ax x    (or , ,
M M
a

ac c   ) 

that necessarily applies at equilibrium (see main text, §5). The only solution satisfying these conditions is 

, , 0ax x    , which demonstrates that bulk metal concentration at t   and at 1K   is 0, i.e. 

   , ,
M M1 / 0 0c K c K        . 

 

II. 4. Detailed asymptotic behavior of eqn (29) for  1K   and  1K  , and details on the 

behavior of eqn (31) at  e L 1k    and  e L 1k    (Table S1).  

The Taylor series expansions of eqns (S31)-(S32) with respect to K  and 1 / K  are useful for 

apprehending the behavior of    , ,
M M/ 0c K c K        at 1K   and 1K  , respectively. After 

calculations with help of Mathcad software (version 15, PTC), we obtain the results collected in Table S1 

and written in reduced forms. The expressions of  , ,0
M M/c K c     (defined by eqn (29)) in the limits 

1K   and 1K   are simply obtained from the results given in Table S1 using the relation 

       , ,0 , , , ,0
M M M M M M/ / 0 0 /c K c c K c K c K c                  where  , ,0

M M0 /c K c     is provided by 
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, which is derived from eqn (29) taken at 0K  . 

Similarly, the limiting behavior of 1/2K  at e L 1k    and e L 1k    is described by the Taylor series 

expansions provided in Table S1 where we discriminate between cases e o 1k    , e o 1k     and 

e o 1k    . The limiting expressions given in Table S1 corresponds to the curves denoted as (a) and (b) 

in Figures 2A-2B. 

Table S1. Taylor series expansions for the ratio    , ,
M M/ 0c K c K        at 1K   and 1K   

(indicated) and for 1/2K  in the limits e L 1k    and e L 1k    (indicated). Results are valid up to first 

order terms in K  or 1/ K  , e Lk   or 1/  e Lk  . 

 

II. 5. Evolution of the ratio     , ,
M M/ 0c K c K        with  K  at different  e Lk   (Figure S1).  
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Figure S1. Dependence of the ratio  , ,

M M/ 0c c K       on 1/2/K K   at various values of e Lk  (indicated). 

Simulations are given for e o 5 / 2k    .  
  

III. 1. Derivation of eqn (32) valid for strong MLS complexes ( 1K  ).  

For strong intracellular MLS complexes, eqn (27) becomes after rearrangements 
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, where we used     a a
M M M/t c t K c t   . The general solution of eqn (S39) can be written in the form 
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, where we introduced the normalized surface metal concentration    M M/ay t c t K . Integration of eqn 

(S41) provides after calculation 
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The constant 1C  is obtained from the initial boundary condition  ,0
1 2M 0C c C   with  2 0C  defined 

from eqn (S42) according to      
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, where we used eqns (7)-(8) at 0t  . In turn, it comes 1 1 M,0
1 M e T uaC K Bn k R     after realizing that 

the product u TJ R  can be rewritten 1 1
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, which is eqn (32) in the main text. 

 

III. 2. Derivation of the expressions for the surface and bulk metal concentrations for  1K   
in the regime of strong and weak affinity of M for the internalisation sites (eqns (33)‐(34) and 
eqns (35)‐(37), respectively). Simplifications of eqns (37)‐(38) for situations where  ok k k    

and   e 1k k    .  
 

Regime of strong M affinity for the internalisation sites in the limit 1K   (eqns (33)-(34)). 

In this regime, we have  M M
aK c t  at any time t so that  u uJ t J  . Simplifying eqn (S6) accordingly 

and discarding the MLS dissociation terms not relevant in the 1K   limit, it comes 
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After simple algebra, the integration of eqn (S45) leads to   
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, which is eqn (33) in the main text. To derive  Mc t , we now use eqn (S44) (or eqn (32)) in the limit 

 u uJ t J   or equivalently     / 1 1y t y t   with    M M/ay t c t K . It comes after simplification 
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In addition, from eqns (8) and (28) we easily derive that the initial M transport flux  M 0J  is given by  
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This expression identifies with that derived in Ref [1] in the limit M,0
u 0   where the dimensionless 

metal surface affinity parameter and bioconversion capacity of the microorganism noted A and B in Ref 

[1], respectively, are defined here by 1
oA x  and 1 1

oB x Bn  . At 0t  , the condition  u u0J J   

applies and eqn (10) then simplifies into   M,0
M u u0 / 1J J    . The latter expression is consistent with 

eqn (S48) provided that 1
o 1x   and  1 1 M,0

o u1 1x Bn     . Simplifying eqn (28) in these limits, we 

obtain  ,0 ,0
M M/ 1a

ac c    or, equivalently,  1 1 M,0
M e T u T M 0 0aK Bn k R R J      . In turn, eqn (S47) 

becomes 

              e 11
M M M M/ / 1 e

1
k ta

ac t K c t K Bn 


       
 (S49) 

, which is eqn (34) in the main text. 

 

 Regime of weak M affinity for the internalisation sites in the limit 1K   (eqns (35)-(37)). 

In this regime where the condition  M M
aK c t  applies, the uptake flux (eqn (7)) can be linearized 

according to      u u M M/ /aJ t J c t K y t   . Equation (S6) taken in the extreme 1K   then reduces 

to 

 
       e L e e o e

0E E E

d 1 1
d 0

d

ty t k k k k
y t y

t

       
  

   
    . (S50) 
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Equation (S50) leads to the second-order differential equation in       u u0 0
/ d d

t t
t J J y        

  e L e E e e o

E E E

1
tt t

k k k k
t

    
  

 
       . (S51) 

The characteristic polynomial equation associated with eqn (S51) admits the discriminant  that reads 

after rearrangements 

      2 22 2
E e L e E e L e E1 2 1k k k k             (S52) 

The quantity 2
E  is always 0  irrespective of the value of  , which can be shown after evaluation of 

the discriminant of the second order polynomial eqn (S52) in  . Let us first examined cases where

2
E 0  . Then, the general solution of eqn (S51) can be written in the form  

                               oe e /k t k tt      
      (S53) 

, where   are independent of time and  0k   (with k k  ) are the two kinetic constants defined by  

                              
 

e E
E e L E 2

e L E

4
1 1 1 / 2

1

k
k k

k

   
 



 
          

     

. (S54) 

  are determined from the boundaries  0 0   and    0 0t y  , which provides after evaluation

,0
M oM / /ac K k

k k

 


 

 
  

  

 . Using the relationship   ty t   , we finally obtain  

                              M M
,

/ e jk ta
j

j

c t K A


 
   (S55) 

, with 
,0

M oM / /ac K k
A k k

k k

 
   

 

 
     

  

 , which corresponds to eqn (35) in the main text. The 

expression for  Mc t  in the weak M affinity regime is obtained from eqn (32) after substitution therein of 

the linearized expressions     1
1 1y t y t


    and        

1

1 1 / 1
1

y t y t y t
 



      

 with 

    M M/ 1ay t c t K   defined by eqn (S55). After lengthy calculation and algebraic arrangements, we 

obtain the reduced expression 
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                               (S56) 

, where we used the relationship 1 1
u T M aJ R K Bn   . Equation (S56) is identical to eqn (37) given in 

the main text. Finally, the value of ,0
M
ac  is obtained from application of eqn (10) at 0t   with 

  ,0
u u MM0 / /aJ J c K  , i.e.  1 ,0 1 ,0 ,0 M,0

T u M e uM M M /a a
aR c c J c K k        which leads to 

   1,0 1 M,0 1
M o uM / 1ac K Bn x Bn

     as indicated in the main text. 

 
Analysis of the case ok k k   . 

Let us now address the degeneracy case where 2
E 0  . This situation is achieved for e L 0k    and 

e E 1k    with the result 1
o Ek k k      , which is inferred from eqn (36) in agreement with Figure 

4. Then, the pendant of eqn (35) (or eqn (S55)) is     o
M M o o/ e k tac t K A B t    with  ,0

o MM /aA c K  and 

 ,0
o o M o oM / /aB k c K k     . In addition, it is can be shown after some algebra that the equivalent of 

eqn (37) in the limit 1
o Ek k k       is provided by 
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In turn the expression of the transport flux  MJ t  for 1
o Ek k k       is obtained from eqns (8) and 

(S57) together with     o
M M o o/ e k tac t K A B t   , which yields 
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Analysis of the case  e 1k k    . 

We now examine cases where  e 1k k    , and the conditions leading to such a situation are detailed 

below (in particular it is shown that k  can not take the value  e 1k  ). Then, realizing that 

   e 1
ee 1 / 1

k k t
A k k A t

    
  
         

, substitution of eqn (35) into eqn (32) now provides 
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, and the metal transport flux expression now reads as     
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                                                                                          (S60) 
Evaluation of the conditions leading to  e 1k k    . 

Let us first show that the condition  e 1k k     is never met. Finding the critical value c  taken by 

e Ek    such that  e 1k k     comes to solve the equation E e Ek k      in   where Ek   is 

defined by eqn (36). After calculation, we obtain  1
c e E e E e L e L e E( ) 1k k k k k         . We 

exclude here the case E L   (i.e. 1 0Bn  ) for which the kinetic constant  e 1k   is not operational 

in the practical limit M,0
u 0   (ESI, part III.6). As E 1k    over the whole range of   (see Figure 3A), 

c  must satisfy the condition e E c 1k     . In addition, the condition c 0   further imposes that 



S17 
 

 e L e E e L1k k k     . Substituting the above expression defining c  into the inequality 

e E c 1k     , we get    1
e E1 1 k    . This inequality is never verified because e E 0k   , so that there 

are no conditions leading to  e 1k k    . We can now attempt finding the value of c  such that 

 e 1k k    . Adopting the same procedure as above, we again obtain the expression 

 1
c e E e E e L e L e E( ) 1k k k k k         . However, c  must now satisfy the condition 

e E c e L1k k      as E e L1k k     over the whole range of e Ek    (see Figure 3B).  

Substituting this latter inequality into the expression of c , we obtain  e L e E e L1k k k     , which is  

also consistent with the necessity to have positive values of c . In turn, the relationship  e 1k k     is 

verified at the value c   (specified below) provided that the  e L e E,k k   couple is in line with the 

condition  e L e E e L1k k k      : Ek   then reduces to   1
E L E1 /k    

    and the critical value of 

 c c e E/ k    where  e c1k k     is given by   1
c e E L 1k   
     . 

 
III. 3. Limits of eqns (35), (37) at  0  . 

It can be shown that A  involved in eqn (35) and (37) satisfies the limit  e o e L0 / 1A k k        

while  ,0
M e o e LM0 / / 1aA c K k k       , where we used the limits 

0 0k    , 

 e L E0 1 /k k      . Replacing these limits into eqn (35) we obtain 
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 (S61) 

, where  d E e L/ 1 k    . Equation (S61) correctly corresponds to the result derived in Ref [2] for 

microorganisms in the absence of intracellular MLS formation and in the weak affinity limit. The 

following limits can be further shown  
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, so that substitution into eqn (37) leads after some arrangements to 
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. (S62) 

This expression correctly compares with the result obtained in Ref [2] for cases where intracellular MLS 

formation is not operational. 

 
III. 4. Evolution of  Ek   with  e Ek   at different  e Lk   (Figure S2). 

 
 

 
Figure S2. Dependence of the (dimensionless) kinetic constants Ek   on e Ek    at various values of e Lk   

(indicated). Dotted lines represent the evolution of Ek   at low and large e Ek     and the corresponding 

analytical Taylor-series expressions are indicated in Figure 3A. 
 

III. 5. Physical interpretation of the timescale   i
E a E e LS/ Vk k     , and comments on Table 1. 

Using eqns (21)-(22), E  can be rewritten in the form 

                             
c

2 1
E S u 14 d /

r

a
a

R S J Bn      
 
   
 
 

 . (S63) 

In the following we define the Warburg-like element WZ with value1  

                             
c

2 1
u 14 d /

r

W a
a

Z S J Bn        . (S64) 
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After algebraic rearrangements, WZ can be expressed according to  

                                 E L p/ 1 /W aZ V V S      (S65) 

, where we used eqns (21)-(22). Equation (S65) corresponds to that provided in the main text (see caption 

Table 1). In addition, the dimensionless product 
c

2
e L e S4 d /

r

a
a

k k R S       (eqn (21)) can be viewed 

as the ratio between the M membrane transfer resistance SR  and the excretion resistance 

c
1

2
e, e4 d

r

a
a

R S k    


 
 
 
 

 . Under the electrostatic conditions specified in the main text (i.e. 1 / 

), e,R   can be rewritten as  e, e / 1R R V     with  e a e p/R S k V  and soft p/aV V V . The 

timescale  i
d E a E e LS/ Vk k       corresponds to   1k 

  in the limit  i
a e L ES 1 /Vk k      (see 

main text). It can be written in the following form 

                             i S
d S a ES

e,
/ V

W
R

R Z k
R 

   
   

 
  (S66) 

, or, equivalently, 
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Equation (S67) is analogous to that defining the characteristic time for discharging a (Warburg-like) 

element with value WZ  across an interface with charge transfer resistance  ct S e, e, S
ˆ ˆ/R R R R R    

with i
S S a ES

ˆ / VR R k   . ctR  is nothing else than the equivalent resistance for the resistances SR̂  and 

e,R   set in parallel, in agreement with the electrochemical circuit schemed in Table 1 (case   1k 
  for 

the limit  i
a e L ES 1 /Vk k     ). Considering the inequality   i

a E e LS 1 1Vk k       defining the 

range of applicability of the limit   1
dk 

   , it is easy to verify that S S
ˆ / 1R R   and e, S

ˆR R   (see 

Table 1), the latter inequality stemming from  i
a E S e, S e,S 1 / /Vk R R R R      . Stated differently, 

fast MLS formation kinetics leads to a decrease of the membrane transfer resistance SR  and 

microorganisms display a stronger propensity to accumulate M than excrete internalized metal ions. In 
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turn, fast MLS formation facilitates the intracellular sequestration of metal ions in the form of MLS 

complexes. 

Following the above methodology, it is possible to evaluate expressions of charge transfer resistances 

associated to 1/ k . In the limit  i
a e L ES 1/ 2 /Vk k      (see Table 1), Figure 3A shows that  

   1
E e L1 /k k 

     with e Ek   , or, equivalently,      i
11

a e LS 1Vk k k 
 

   . As the 

inequality     i
a e L E e L ES 1/ 2 / 1 /Vk k k          applies, we infer    i

1 1
a E e LS 1Vk k  

    , 

i.e.   1
Ek 

   (see Table 1). In addition,   1k 
  can be written in the form

     i
11

E a E e LS 1Vk k k   
 

   , or 

                              
i

1 e L
S

a ES

1
W V

k
k R Z

k
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, which corresponds to the time for discharging the Warburg-like element WZ  across a charge transfer 

resistance defined here by    i
ct S e L a E SS1 / VR R k k R      (see Table 1). This means that a sluggish 

MLS formation (  i
a e L ES 1/ 2 /Vk k     ) effectively leads to increasing the M membrane transfer 

resistance (blocking effect). In the extreme of fast intracellular MLS formation (

    i
a e L E e L ES 1 / 2 / 1 /Vk k k         ), we have   1

E e L1/ 1 /k k  
     (see Figure 3A) or 

 i

11

S a E S e,S1 / 1 /V
Wk R Z k R R  




 
  

 
. Using  i

a E e L e L S e,S 1 /Vk k k R R          that holds in 

the limit examined, it comes  i
1

S a E e LS1/ 1 V
Wk R Z k k  




 
  

 
, which corresponds to the time for 

discharging the Warburg-like element into a charge transfer resistance that identifies with 

 i
1

S a E e L SS1 VR k k R  
 

  
 

, in line with the result reported in Table 1. The absence of any excretion  

contribution in this charge transfer resistance agrees with the limit  , ,
M M/ 0 0c c K        discussed in 

§II.5 for 1K   (Table 1 applies for such strong MLS complexes), recalling that excretion is required to 

obtain a finite non-zero M bulk concentration at equilibrium.2 
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As stated in the main text, it is possible to evaluate from Table 1 which of the timescale    1k 
  or 

  1k 
  is operational in the regime of slow and fast intracellular MLS formation (left and right column of 

Table 1, respectively). In the regime of slow MLS formation, the timescale   1k 
  is much larger than 

the free M transfer time E  between bulk and intracellular volume (see Table 1 and Figure 4). 

Accordingly, it is the only   1k 
  contribution that will be operational in defining kinetics of M bulk 

depletion and overall uptake. On the opposite, the membrane transfer resistance associated with   1k 
  in 

the limit of fast MLS formation significantly facilitates M uptake-depletion compared to that relevant for 

the   1k 
  case. In line with this, the processes subsumed in the   1k 

  component thus now play a key 

role in governing/limiting M accumulation and bulk depletion kinetics. 

 

III. 6. Simplification of eqns (37)‐(38) for  M,0
u 0  .  

Obviously, in the limit of fast intracellular MLS formation reached at     we have  e 1e 0k t    

in eqn (37) and the time constant   1
e1 / k   is then not operational in determining M uptake/depletion 

kinetics. For 0  , we showed in §III.3 that eqn (37) reduces to 
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In addition, under the condition  a
M MK c t  marking the validity of eqn (S69), the time constant o  

defined by eqn (20) may be written for 0   in the form  ,0 M,0
o E M u u e 1 TM / 1 /ac K J k R        . 

This equation is derived after combining the expression  1 1
E M 1 21 2aK Bn         

 
 given in 

the Supporting Information of our previous work1 with the relation 

   1,0 1 M,0 1
M o uM / 1ac K Bn x Bn

     valid for  a
M MK c t  (see ESI, part III.2). In turn, for 

M,0
u 0  , we obtain ,0

o E MM /ac K     and 
 

 
1 M,0o E M MM

T u
e L E

0 /
0

1

a

a

c KK
Bn R

k

 


  
  

     
. The 

prefactor of the ee k t  term in eqn (S69) becomes zero so that the time constant e1/ k  is not operational, 

as stated in the main text. 
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IV.  1.  Time‐dependence of M  transport  flux  at  the membrane  surface under  conditions of 

Figure 5  (Figure S3) and  time‐dependent  ratio  ,0
M M/c c   under conditions of Figure 7  (Figure 

S4). 

 

Figure S3. Evolution of the dimensionless ratio       M u M/J t J t J t  (A) and 

      kin kin u/J t J t J t  (B) with time t  normalized by the M transfer timescale E , at various values of   

(indicated). MJ  and uJ  are defined in the main text and        ic M c
kin u a u d uSd / d VJ t t t k t k t        

corresponds to the net kinetic flux pertaining to intracellular MLS complex formation. Model parameters: as in 

Figure 5 of the main text. The dotted lines in (A) and (B) represent the limits u MJ J  and kin uJ J , 

respectively. 
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Figure S4. Evolution of the ratio ,0

M M/c c   versus E/t   for various values of the dimensionless M reciprocal 

affinity  ,0
o M a M1/ /x K c   (indicated). Model parameters: as in Figure 7 of the main text. 

  

IV.  2.  Expressions  of  , ,0
M M/c c     and  /k k    as  a  function  of  /    and  details  on  the 

corresponding  asymptotic  behavior  at  / 1       and  / 1     (Table  S2).  Derivation  of 

eqns (39)‐(41). 

Equation (29) defines the ratio , ,0
M M/c c    according to

1/22
, ,0 o e L o e L o

M M
o L e L e L L L

21 1 1
/ 1 1 1 1

2 1 1

k kK K
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x k k K K
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, with    ,0 T,0
e o e L E L o o M uM1 / /ak k c x Bn c K            (eqn (30)) which we rewrite in the form

   T,0
e o e L o o u1 1 / 1k k x c V              where we used eqn (24) valid for 1  . In turn we 

obtain     T,0
o L o o u e L/ 1 1 / 1 /x c V k              . Further using eqn (23) that defines e Lk   as 

a function of  , we finally derive     T,0 1
o L o o u/ 1 1 / 1 /x c V V                   

. 

Substitution of that latter expression and of  1
e Lk V      (eqn (23)) into eqn (S70) provides the 

general relationship that determines the evolution of , ,0
M M/c c    as a function of the microorganism volume 
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fraction   in the suspension. Then, after solving the equation  , ,0
1/2M M/ 1/ 2c c    , we obtain eqn (39) 

that defines the cell volume fraction 1/2  needed to achieve a two-fold reduction of the bulk M 

concentration at t   under the condition o 0c  . Using Mathcad software (version 15, PTC) and after 

simplifications, we further obtain the Taylor series expansions reported in Table S2 for , ,0
M M/c c    at 

/ 1    and / 1   . For the sake of simplicity, we derived these expressions in the limit where the 

term V  is so small compared to unity (which is generally the case in practice) that it can be discarded in 

the mathematical developments. 

As detailed in the main text, the kinetic constants  0k   given by eqn (36) are fully defined upon 

upon the only specification of e Lk   and  i
e E a ES

Vk k     and the same holds for the ratio /k k  . The 

expressions of k  and /k k   as a function of cell volume fraction   are simply obtained after 

substituting into eqn (36) the relationships defining the dependence of e Lk   and e Ek   on  , i.e. 

 1
e Lk V      (which is eqn (23)) and    1 1

e E 1 / 1k V Bn V             . Using 

Mathcad software (version 15, PTC), the first derivative of the ratio /k k   with respect to   can be 

easily computed. Then, the position and the value of the maximum in /k k   can be determined from the 

value in   where this derivative is zero. After lengthy simplifications and neglect of the  -dependent 

component of   (see justification in ESI, Part I.2), the expression defining  
max

/  where /k k   is 

maximum can be written in the form given by eqn (40) and the value  max/k k   can be arranged 

according to eqn (41). Finally, we derived the Taylor-series expansion of the ratio /k k   at / 1    

and / 1    and after arrangements we obtain the results in reduced form collected in Table S2. 
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Table S2. Taylor series expansions for the ratio , ,0
M M/c c    at / 1    and / 1    (indicated, valid with 

discarding term in V ) and for /k k   in the limits / 1    and / 1    (indicated). Results are valid up 

to first order terms in /   or /  .  

 

IV. 3. Dependence of  , ,0
M M/c c    on  /   and  K  at various values of  oc  and  o1/ x   (Figure 

S5).   
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Figure S5. Evolution of the ratio , ,0
M M/c c    with microorganism volume fraction (normalized by S e/R R   

with  e a e p/R S k V  and  S int H1 / aR k K  ) and with intracellular dimensionless MLS complex stability 

constant ( K ). Model parameters: 310  , T,0
u 0V   , o/ 1aa r      with (A): o 0c  , o 1x  , 

(B): o 0c  , 2
o 5 10x   , (C): o 0c  , 3

o 5 10x   , (D): o 1c  , 2
o 5 10x   . 
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