Atomic layer deposition of diisopropylamino silane on WO₃(001) and W(110): a density functional theory study

Kyungtae Lee^a, Woojin Lee^a, Hyo Sug Lee^a, Jaikwang Shin^a, Jieun Park^b, Seongsuk Lee^b, Samjong Choi^b, Sueryeon Kim^b, Jinseong Kim^b, Youngseon Shim^{a*}

^aPlatform Technology Lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Suwon, Gyeonggi-do, 16678, South Korea. E-mail: ys1231.shim@samsung.com ^bMemory Manufacturing Operation Center, Samsung Electronics Co., Ltd, 1, Samsungjeonjaro, Hwasung, Gyeonggi-do, 18448, South Korea

Figure S1. Si-N dissociation of DIPAS on the hydroxylated amorphous WO₃ surface. While there is no H transfer during DIPAS adsorption in Path 1, the H transfer from the surface OH group to the N atom of DIPAS takes place in Path 2. Red spheres, O; blue spheres, W; Iris blue spheres, N; large gray spheres, Si; small gray spheres, C; white spheres, H.

Figure S2. Dissociation of SiH₃ on the hydroxylated WO₃ surface through a two- step process: Oxidation of SiH₃ to Si(OH)₃ by ozone (a, initial; b, transition; c, final state) and then dehydration of Si(OH)₃ to SiH₃ (d, initial; e, transition; f, final state)

Figure S3. Snapshots during the decomposition of DIPAS molecules on W(110) at (a) 120, (b) 380, (c) 1320, and (d) 3720 fs in an AIMD trajectory

Figure S4. Four reaction paths for $SiNC_6H_{13}$ * decomposition: Si-N, C-H, N-C, and C-C dissociation

6th reaction step (path1): CH-H dissociation

IS TS FS

6th reaction step (path2): CH₂-H dissociation

IS TS FS

7th reaction step: C-H dissociation

8th reaction step (path1): C-H dissociation

8th reaction step (path2): C-C dissociation

9th reaction step (path1): C-H dissociation

9th reaction step (path2): C-C dissociation

10th reaction step: Si-N dissociation

Figure S5. Initial (IS), transition (TS), and final (FS) states of intermediate reactions from the 6th reaction step to the 10th reaction step. In the case of the 8th reaction step (path2), the transition state image is not included because the transition state is similar to the final state.

Table S1. Activation energies (E_a , eV) and	reaction energies	(E_{rxn}, eV) o	of SiH ₃ dissociation
on the hydroxylated $WO_3(001)$ surface in the	ne presence of ozon	ne.	

Reaction	Step1: oxidation	Step2: dehydration
	$SiH_3 + O_3 \rightarrow SiH_2(OH) + O_2$	$SiH_2(OH) + OH$ $\rightarrow SiH_2 + H_2O$
E_a	0.74	1.10
E_{rxn}	-3.38	-0.73

Table S2. Activation energies (E_a, eV) and reaction energies (E_{rxn}, eV) of DIPAS

reaction step	dissociation	E_a (eV)	E_{rxn} (eV)
step 1	Si-H	0.00	-0.63
step 2	Si-H	0.00	-1.25
step 3	Si-H	0.08	-1.08
	Si-N	1.72	-2.19
step 4	Si-N	1.81	-1.29
	N-C	2.33	-0.55
	C-C	1.48	-0.45
	C-H	0.61	0.01
step 5	Si-N	0.97	-2.11
	C-H	0.40	-0.67
	N-C	1.07	-0.85
	C-C	1.01	-0.90
step 6	СН-Н	0.43	-0.32
	CH ₂ -H	1.00	-1.03
step 7	C-H	0.17	-0.55
step 8	C-H	1.02	-0.52
	C-C	0.71	0.71
step 9	С-Н	0.39	-0.29
	C-C	0.32	-1.32
step 10	Si-N	1.06	-0.43

decomposition on the W(110) surface