Peeling the Astronomical Onion

Supplementary Information

Alexander Rosu-Finsen^a, Demian Marchione^{a,‡}, Tara L. Salter^b, James W. Stubbing^b, Wendy A. Brown^b and Martin R.S. McCoustra^a

Experiments regarding re-adsorption of H_2O after the initial exposure of H_2O are explained here as conducted at HWU where 0.5 ML H_2O films were investigated on aSiO₂. The re-adsorption experiments involved reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption with the results shown in Fig. 1.

Figure 1: What is shown here is 0.5 ML H_2O on $aSiO_2$ at 17 K (black trace) which is later desorbed leading to the red trace showing no signs of re-adsorbed H_2O . Figure also found in reference [1].

A 0.5 ML H₂O film was deposited onto the aSiO₂ surface at 17 K followed by the collection of a RAIR spectrum as shown with the black trace in Fig. 1. The film was then desorbed with a heating rate of 0.04 K s⁻¹ and the surface was held at >170 K until a partial pressure of 2 × 10^{-10} mbar of H₂O was monitored with the mass spectrometer (this is the same partial pressure range the de-wetting experiments were conducted at). The sample was allowed to cool to the base temperature of 17 K over the timescale of a typical experiment and a secondary RAIR spectrum was collected as shown with the red trace in Fig. 1. As can be seen, the red trace shows negligible amounts of H₂O indicating that readsorption does not occur once the initial low coverage H₂O film has been deposited onto the surface.

References:

1 A. Rosu-Finsen, Ph.D. Thesis, Heriot-Watt University, 2016.

^{a.} Institute of Chemical Sciences, Heriot-Watt University, EDINBURGH, EH14 4AS, United Kingdom.

^{b.} Division of Chemistry, University of Sussex, Falmer, BRIGHTON, BN1 9QJ, United Kingdom.

^c + Current Address: Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x