In-situ X-ray Absorption Near Edge Structure Studies and Charge Transfer Kinetics of Na₆[V₁₀O₂₈] Electrodes_ Supporting Information

Han-Yi Chen,^{1,2,3‡} Jochen Friedl,^{1,4‡} Chun-Jern Pan,⁵ Ali Haider,⁶ Rami Al-Oweini,^{6†} Yan Ling Yeah,^{7, 8} Ming-Hsien Lin,⁵ Ulrich Kortz,⁶ Bing-Joe Hwang,^{5, 8*} Madhavi Srinivasan,^{1, 3, 7*} and Ulrich Stimming^{1, 2, 4, 9*}

Figure S1. SEM cross-section images of $Na_6[V_{10}O_{28}]$ electrodes before and after cycling (measured at 1.75 V)

Figure S2. Normalized in-situ V K-edge XANES spectra for $Na_6[V_{10}O_{28}]$ electrodes in the first cycle at potential of OCV (3 V), first full reduction (1R, 1.75 V), first full oxidation (1O, 4 V) compared with V_2O_5 and V_2O_4 reference materials.

Figure S3. XPS spectra of $Na_6[V_{10}O_{28}]$ powder and electrodes before and after cycling

Figure S4. (a) Cyclic voltammograms of Na₆[V₁₀O₂₈] electrodes at 0.1, 0.2, 0.5, 1, 2 mV s⁻¹ in 1 M LiPF₆/EC:DEC (1:1) in a half-cell configuration with Li metal as counter electrode and reference electrode. (b) Peak current versus square root of scan rate for the main redox peaks in (a).

Figure S5. Schematic sketch of the in situ XAS cell. The coated foils were assembled in a 2016 coin cell with circular metallic lithium metal (diameter 16 mm) as the counter electrode, and polyole-fin (diameter 19 mm) as separator. The stainless steel cap, bottom, spacer, and spring were punched in order to generate windows for X-ray penetration (beam size: $2 \times 2 \text{ mm}^2$). Those windows were covered with Kapton sealed by AB glue. 1M LiPF₆ in EC:DEC (1:1 weight %) was employed as electrolyte.