Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

Stress-strain behavior of block-copolymer and its nanocomposites filled

with uniform or Janus nanoparticles under shear: A Molecular Dynamics

Simulation

Lu Wang^{1, 2}, Hongji Liu^{1,2}, Fanzhu Li^{1,2}, Jianxiang Shen⁵, Zijian Zheng^{1,2,3}, Yangyang

Gao^{1,2,3}, Jun Liu^{1, 2, 3*}, Youping Wu^{1, 2, 3}, Liqun Zhang^{1, 2,3,4*}

¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China

²Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China

³Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, PRC

⁴State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China

⁵College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, P. R. China

Figure S1. Plot of the stress-strain curve for $A_5B_{10}A_5$ tri-block below and above T_g , the inset indicates the stress-strain behavior at the small deformation.

^{*)}Authors to whom correspondence should be addressed. Electronic addresses: <u>liujun@mail.buct.edu.cn</u> or <u>zhanglq@mail.buct.edu.cn</u>

Figure S2. The effect of the tensile rate on the tensile stress-strain curves for $A_5B_{10}A_5$ triblock.

Figure S3. The tensile stress-strain curves for lamellar structure with different \mathcal{E}_{A-A} when changing the box length in the direction (a) perpendicular and (b) parallel to the lamellar structure. The tensile stress-strain curves for (c) island and (d) cylindrical structure with different \mathcal{E}_{A-A} .