Supplementary Information

for

The segregation resistance of the sandwich Pt_{2ML}/Os/Pd₃Al catalyst for oxygen reduction reaction: A Density Functional Theory Study

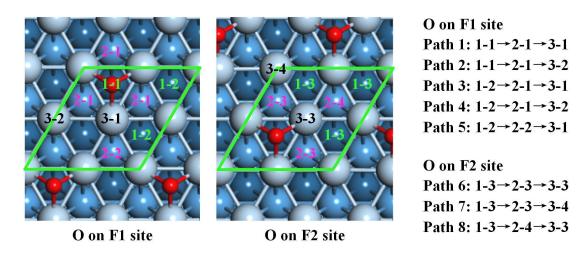
B. B. Xiao^a, X. B. Jiang^b, X. L. Yang^{a*}, Q. Jiang^{c*}, F. Zheng^{a,d}

^aSchool of Energy and Power Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

^bSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

^cKey Laboratory of Automobile Materials, Ministry of Education, and Department of

Materials Science and Engineering, Jilin University, 130022, Changchun, China


^dResearch Center of Zhongjing New Energy Science & Technology, 212003,

Zhenjiang, Jiangsu, China

^{*} Corresponding authors.

Prof. Jiang, Q. E-mail: jiangq@jlu.edu.cn; Fax: +86-431-85095371

Prof. Yang, X. L. E-mail: hcyangxl2010@just.edu.cn; Fax: +86-511-84411906

Figure S1. Schematic showing the Al segregation paths under different O adsorption sites. The different Al configuration in the N layer, denoted as N-M. The possibility paths are five and three for O adsorption on F_1 and F_2 sites, respectively.