¹²⁵Te NMR Provides Evidence of Autoassociation of Organo-Ditellurides in Solution

Philip J. W. Elder, I. Vargas-Baca*

Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario Canada L8S 4M1. Email: vargas@chemistry.mcmaster.ca

SUPPORTING INFORMATION

Figure S1. Temperature dependence of the ¹²⁵Te NMR line of (CH₃)₂Te (standard).

Table S1. Fitted concentration coefficients and δ_0^{175} Te NMR (ppm) at selected temperatures for 2 in
water.*

T (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ _o (ppm†)
315.0	-0.6 ± 0.1	710.8
307.7	-0.4 ± 0.1	710.2
296.2	-0.4 ± 0.1	709.4
288.5	-0.8 ± 0.1	709.0
279.8	-0.6 ± 0.1	708.4

*Standard errors calculated at 95% confidence range.

^{\dagger} Standard error \leq 0.05 ppm unless otherwise stated.

At infinite dilution, when the effect of the diamagetic susceptibility if the sample is zero

$$\delta_0 = \frac{\sigma_{ref} - \sigma}{1 - \sigma_{ref}} = \frac{v - v_{ref}}{v_{ref}} = \frac{v}{v_{ref}} - 1$$
$$v = \frac{\gamma B}{2\pi}$$

in each case, reference and sample, at the nucleus:

$$B_{eff} = B_{0} \left(1 - \sigma \right)$$

more preceisely and in order to account for the effect of concentration of the sample in cgs units:

$$B_{eff} = B_{o} \left(1 + 4\pi \chi_{v}\right) \left(1 - \sigma\right)$$
$$\delta = \frac{\left(1 + 4\pi \chi_{v}\right) \left(1 - \sigma\right)}{\left(1 - \sigma_{ref}\right)} - 1$$

for the sample in dilute solution, if ΔV of mixing is small and Wiedemann's law holds:

$$\chi_{v} = \chi_{v,solvent} + (\chi_{v,sample} - \chi_{v,solvent})p$$

$$p = \frac{V_{sample}}{V_{sample} + V_{solvent}} = \frac{V_{sample}}{V} = \frac{m_{sample}}{\rho_{sample}V} = \frac{FW_{sample}C + V_{sample}C + V_{sample}C + V_{sample}V}{\rho_{sample}V} = \frac{FW_{sample}C + V_{sample}V}{\rho_{sample}V}$$

$$\chi_{v} = \chi_{v,solvent} + \left(\chi_{v,sample} - \chi_{v,solvent}\right) \frac{FW_{sample}C}{\rho_{sample}}$$

$$\frac{d\delta}{dC} = \frac{d}{dC} \frac{\left(1 + 4\pi\chi_{v}\right)\left(1 - \sigma\right)}{\left(1 - \sigma_{ref}\right)} - 1$$

$$\frac{d\delta}{dC} = \frac{\left(1 - \sigma\right)}{\left(1 - \sigma_{ref}\right)} \frac{d}{dC} \left(1 + 4\pi\chi_{v}\right) = \frac{\left(1 - \sigma\right)}{\left(1 - \sigma_{ref}\right)} \frac{d}{dC} \left(4\pi\chi_{v}\right)$$

$$\frac{d}{dC} \left(4\pi\chi_{v}\right) = \frac{d}{dC} \left(\chi_{v,solvent} + \left(\chi_{v,sample} - \chi_{v,solvent}\right) \frac{FW_{sample}}{\rho_{sample}}$$

$$\frac{d\delta}{dC} = 4\pi \left(\frac{1 - \sigma}{\left(1 - \sigma_{ref}\right)} \left(\chi_{v,sample} - \chi_{v,solvent}\right) \frac{FW_{sample}}{\rho_{sample}}$$

$$\frac{\left(1 - \sigma\right)}{\left(1 - \sigma_{ref}\right)} - 1 = \frac{\left(1 - \sigma\right) - \left(1 - \sigma_{ref}\right)}{\left(1 - \sigma_{ref}\right)} = \frac{\sigma_{ref} - \sigma}{1 - \sigma_{ref}} = \delta_{0}$$

$$\frac{d\delta}{dC} = 4\pi \left(\delta_{0} + 1\right) \left(\chi_{v,sample} - \chi_{v,solvent}\right) \frac{FW_{sample}}{\rho_{sample}}$$
as $\delta_{0} \ll 1$

$$\frac{d\delta}{dC} \approx 4\pi \left(\chi_{v,sample} - \chi_{v,solvent}\right) \frac{FW_{sample}}{\rho_{sample}}$$
or in SI units
$$\frac{d\delta}{dC} \approx u_{0} \left(\chi_{v,sample} - \chi_{v,solvent}\right) \frac{FW_{sample}}{PW_{sample}}$$

$$\frac{dC}{dC} \approx \mu_0 \left(\chi_{v,sample} - \chi_{v,solvent} \right) - \frac{\rho_{sample}}{\rho_{sample}}$$

From literature* data for Te(OH)₆: $\rho_{\text{Te(OH)6}} = 3,070 \text{ g/L}$

 $FW_{Te(OH)6} = 229.644040 \text{ g/mol}$

 $\chi_{v,H20}$ = -7.203×10⁻⁷

 $\chi_{v,Te(OH)6}$ = -1.2×10⁻⁶

 $\frac{d\delta}{dC}$ = -0.5 ppm L mol⁻¹ * 0. Lindqvist, *Acta Chem. Scand.* 1970, **24**, 3178-88.

Temperature (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ ₀ (ppm†)
308.2	11.9 ± 0.2	421.6
296.6	11.8 ± 0.1	419.0
288.9	12.6 ± 0.4	417.3
280.1	13.3 ± 0.3	415.3
272.7	14.6 ± 0.5	413.5

Table S2. Fitted concentration coefficients and δ_0^{175} Te NMR (ppm) at selected temperatures for 2 in hexane.*

*Standard errors calculated at 95% confidence range.

[†] Standard error ≤ 0.05 ppm unless otherwise stated.

Table S3. Fitted concentration coefficients and δ_0^{175} Te NMR (ppm) at selected temperatures for **2** in toluene.*

Temperature (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ ₀ (ppm†)
307.7	7.3 ± 0.2	422.2
296.3	7.6 ± 0.1	419.4
288.7	7.5 ± 0.2	417.5
279.9	8.0 ± 0.3	415.2
272.6	8.5 ± 0.4	413.2

*Standard errors calculated at 95% confidence range.

[†] Standard error ≤ 0.05 ppm unless otherwise stated.

Table S4. Fitted concentration coefficients and δ_0^{175} Te NMR (ppm) at selected temperatures for 2 in dichloromethane.*

Temperature (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ _o (ppm†)
295.6	4.52 ± 0.09	420.4
287.2	4.91 ± 0.10	418.9
280.3	5.04 ± 0.04	417.7

*Standard errors calculated at 95% confidence range.

[†] Standard error ≤ 0.05 ppm unless otherwise stated.

Temperature (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ _o (ppm†)
307.8	8.7 ± 0.3	345.2
296.2	9.3 ± 0.2	343.9
289.2	9.8 ± 0.3	343.1
281.3	10.1 ± 0.3	342.2
274.6	10.6 ± 0.3	341.5

Table S5. Fitted concentration coefficients and δ_0^{175} Te NMR (ppm) at selected temperatures for **3** in hexane.*

*Standard errors calculated at 95% confidence range.

[†] Standard error \leq 0.05 ppm unless otherwise stated.

Table S6. Fitted concentration coefficients and $\delta_0{}^{175}\text{Te}$ NMR (ppm) at selected temperatures for 3 in toluene.*

Temperature (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ _o (ppm†)
308.0	3.11 ± 0.05	348.7
297.6	3.5 ± 0.2	347.3
288.6	3.0 ± 0.1	346.2
279.9	2.6 ± 0.2	345.2
272.5	3.1 ± 0.1	344.3

*Standard errors calculated at 95% confidence range.

[†] Standard error \leq 0.05 ppm unless otherwise stated.

Table S7. Fitted concentration coefficients and δ_0^{175} Te NMR (ppm) at selected temperatures for **4** in dichloromethane.*

Temperature (± 0.1K)	Coefficient (ppm L mol ⁻¹)	δ _o (ppm†)
296.0	-7 ± 1	418.0
291.9	-9 ± 2	415.9
287.3	-11 ± 2	414.1
280.0	-13 ± 2	410.9

*Standard errors calculated at 95% confidence range.

^{\dagger} Standard error \leq 0.05 ppm unless otherwise stated.

Figure S2. Van't Hoff plots for the proposed equilibrium of autoassociation of **2** or **3** in selected solvents. Estimated values of Δ H are given for those cases with reasonably high correlation, as noted by the squared linear correlation coefficient (R²).

Figure S3. a) Molecular conformations of Ph-Te-Te-Ph, **1**, at the minima of two trajectories of minimum potential energy. b) Potential energy profiles; c) dipole moments; d) energy of first electronic excitation for trajectories A (--) and B (--).

Figure S4. Walsh diagram for the frontier orbitals of 1 as a function of the C-Te-Te-C dihedral angle.

The potential energy surface was evaluated by continuously varying C-Te-Te-C torsion angle from -20° to 200° while all other internal dimensions were fully optimized. The resulting potential energy surface is displayed in Figure S3. Two trajectories were identified by these calculations; they differ only by the orientation of the aromatic rings, as illustrated in Figure 3a. The trajectories are numerically different, but the differences are small enough (< 2.1 kJ/mol) to be blurred by thermal effects. In each case there is a well-defined minima at 90° but changes of up to 30° from the minimum would cost less than 5 kJ/mol. Indeed, most of the structurally characterized diaryl ditellurides do exhibit C-Te-Te-C dihedral angle values ranging from 60° to 120°. The maxima at 0° and 180° are the result of repulsion between lone-pairs on the tellurium atoms. The energy difference between the maxima is due to the steric interaction between aromatic rings at small C-Te-Te-C dihedral angles. The small maximum and minimum in surface B at 116 and 121°, respectively, are the result of an abrupt rotation around the C-Te bonds that takes place once the distance between phenyl rings is big enough.

Figure S5. Effect of the dihedral angle on the ¹²⁵Te NMR chemical shift of **1** along trajectories A (---) and B (-).

	d _{Te-Te}	$\theta_{C\text{-}Te\text{-}Te}$	$\theta_{C\text{-}Te\text{-}Te\text{-}C}$	$\theta_{Ph\text{-}Ph}$
Medium	(Å)	(°)	(°)	(°)
gas phase	2.732	101.10	88.89	23.23
hexanes	2.741	100.32	84.74	22.56
CCl_4	2.740	100.38	86.30	18.42
C_6H_6	2.739	100.56	85.78	22.71
toluene	2.741	100.41	85.34	23.12
$\mathrm{Et}_{3}\mathrm{N}$	2.740	100.38	86.25	17.72
CS_2	2.749	100.47	85.31	22.68
Et ₂ O	2.741	100.33	86.11	18.44
THF	2.742	100.42	88.11	18.77
DCM	2.740	99.99	85.85	18.16
Ру	2.738	100.23	87.03	18.58
<i>i</i> -PrOH	2.741	100.32	87.07	21.63
MeNO ₂	2.740	100.37	87.17	22.02
MeOH	2.741	100.36	86.44	22.69
ACN	2.739	100.51	87.59	21.81
DMSO	2.742	100.32	87.11	22.25

Table S8. A comparison of optimized structures of **1** in gas phase and selected solvents modeled by the COSMO method.

Figure S6. a) Experimentally determined energy of excitation of $\mathbf{2}$ (0.137 M, 303.0 K) dissolved in media of different dielectric constant. b) Calculated energy (COSMO-TD-DFT) for the first excitation of $\mathbf{1}$ in solvents of different dielectric constant. c) Comparison of excitation energies calculated for $\mathbf{1}$ and experimentally measured for $\mathbf{2}$ in a several solvents.

Figure S7. Experimental ¹²⁵Te chemical shift as a function of excitation energy for 2 in different solvents.