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Supplementary Note 

 

Estimation of contact line force at tip-liquid contact interface 

Contact line force Fline is given by the sum of the tangential components of the surface 

tension around the three phase contact line at tip-liquid contact interface. For the liquid 

bridge in equilibrium, the tip-liquid contact angle υ (Fig. 3a in the main text) exhibits 

constant value around the contact line, and Fline becomes zero in lateral direction. However, 

when the tip moves, hydrodynamic viscous damping near the contact line can induce a 

change in the angle υ [S1], and thus Fline can have a finite value in magnitude. 

Specifically, when x=±A, the tip velocity is zero, so is the fluid velocity near the contact 

line. Thus, hydrodynamic viscous force occurring near the contact line and the resultant 

contact line force are zero at x=±A, i.e., Fline=0 at x=±A. However, when x=0, the tip shears 

the fluid with velocity v=wA, which bends the liquid-air interface and changes the contact 

angle. The angle change at x=0 is estimated as υ
3
-υeq

3
=9 Ca l [S1], where Ca is the capillary 

number and l=log(lm/l0) is the ratio of macroscopic to microscopic length scales. The 

logarithmic factor l typically falls into the range of 1~100, and Ca is given by μwA/γ, where μ 

is the viscosity of liquid, γ the surface tension, w the angular frequency, and A the tip 

oscillation amplitude. Notice that the photo images (Fig. 2a in the main text) show υeq=π/2, 

and the angle change Δυ should be negligible, Δυ≪1, because the micro-sized nanoliter 

volume liquid bridge is sheared only by nanoscale amplitude (about 1 nm). This leads to 

Δυ/A= μwl/(3γ υeq
2
) ≈ 3.28×10

-5
 rad/nm even for l=100. Such an angle change generates a net 

force Fline at x=0, which is non-negligible, and leads to the hysteresis in the force-distance 

curve, as schematically described in Fig. 3c (middle) in the main text. The energy dissipation, 

proportional to the enclosed area of the force hysteresis curve, is measured by the damping 

bintw (=Edis/(πA
2
)) in dynamic force spectroscopy, and is approximately given by 

bintw≈πRψγ(Δυ/A)sinυeq, where Rψ is the tip radius (see Supplementary Equation 3 in Ref 

[S2]). For the tip we used (Rψ=125/2 μm), the contact line-induced damping is estimated by 

0.5 N/m, which is reasonably comparable to the experimental results (see the text for details). 
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Derivation of contact area force at tip-liquid contact interface 

  A shear harmonic oscillator interacting with a confined fluid (Fig. 3b in the text) is 

described as  

                         m𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝐹𝑒𝑖𝑤𝑡 +  𝐹area ,                    (1) 

where m is the effective mass of the probe, b the intrinsic damping constant, k the stiffness of 

the probe, Fe
iwt

 the driving force, and Farea the liquid-mediated shear force exerted on the 

contact area. While the contact area force Farea is given by the tensor product of the contact 

area σ and the stress tensor τij at the contact interface, we only consider xz-component of 

stress tensor τij due to the present two-dimensional symmetry of the system to obtain Farea 

such as 

                         𝐹area = 𝜍 𝜏𝑥𝑧 ℎ, 𝑡 = −𝜍 𝜂
𝜕𝑈

𝜕𝑧
|𝑧=ℎ ,                  (2) 

where U(z,t) is the velocity filed of the fluid in the x-direction and governed by Navier-Stokes 

equation. For incompressible Newtonian fluid with the two-dimensional symmetry, the 

Navier-Stokes equation for U(z,t) is reduced to 

                                
𝜕𝑈

𝜕𝑡
=

𝜂

𝜌

𝜕2𝑈

𝜕𝑧2  ,                           (3) 

with no-slip boundary conditions at the upper and lower interfaces, 

                             𝑈 𝑧 = ℎ, 𝑡 = 𝑥 (ℎ, 𝑡),                         (4) 

                               𝑈 𝑧 = 0, 𝑡 = 0.                            (5) 

Since the entire system is oscillatory driven, we assume periodic solutions for the probe 

motion x(h,t) and fluid velocity U(z,t) in the forms 

                       𝑥 ℎ, 𝑡 = 𝐴(ℎ) Exp  𝑖  𝑤𝑡 +  𝜃 −
𝜋

2
  ,                  (6) 

                        𝑈 𝑧, 𝑡 = 𝑢 𝑧  Exp  𝑤𝑡 +  𝜃  .                       (7) 

By inserting Eqs. (6,7) into Eqs. (1-3) and applying the two boundary conditions Eqs. (6,7), 

we obtain the solutions x(h,t) and U(z,t) as well as Farea(h, t) (Eq. (2)). Here, the oscillatory 

force Farea(h, t) can be represented by a force proportional to the probe oscillation x(h,t) as 

                       𝐹area = −𝜅  1 + i cot  
 1−i ℎ

𝛿
  𝑥 ℎ, 𝑡 ,                 (8) 

where 𝛿=(2η/(wρ))
1/2

 and 𝜅=σ w
3/2

 (η𝜌/2)
1/2

. We note that the penetration depth 𝛿 is about 4 

μm in the current system, whereas the tip height h ≈100 μm. Thus, using the relation, cot[(1-

i)a]→i as a→∞, equation (8) is simplified to Farea= - 𝜅(-1+i) x(h,t). Further, since 𝑥 (h,t) = iw 

x(h,t) for the oscillatory solution (Eq. (6)), we can decompose Farea into the position-

dependent and the velocity dependent forces, 

                         𝐹area = 𝜅 𝑥 ℎ, 𝑡 − (𝜅/𝑤) 𝑥  ℎ, 𝑡 .                   (9) 

By comparing Eq. (9) with Farea = -kint x – bint ẋ, we get the elastic and damping coefficients 

of the interaction as follows,  

                      𝑘int = −𝑏int 𝑤 = −𝜅 = −σ w3/2 𝜂𝜌/2.               (10) 

Therefore, the contact area interaction results in the negative-valued elasticity kint and positive 

damping bintw, as observed in the experiments (Fig. 2c in the text). Equation (10) relates the 



elastic coefficient kint of the interaction with the fluid viscosity η, from which we finally 

obtain 

                           𝜂 = 2(𝑘int )2/(σ2 w3𝜌).                     (11) 

We experimentally measure kint by DFS method, and derive the viscosity η using Eq. (11). 
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Supplementary Figure 1. Independency of substrates used. The measured negative elasticity kint and 

positive damping bintw show almost identical behaviors for various types of substrates used, which 

demonstrates that our AFM-based platform for determination of viscosity is not sensitive to the 

specifics of substrates.  

 

 

Supplementary Figure 2. Decrease of |kint| with evaporation. The negative elasticity kint in the 

nanoliter-volume water bridge varies more significantly, compared to the damping bintw, during the 

dynamic force measurements. In particular, the magnitude of the elasticity decreases as the volume of 

the sheared bridge decreases due to evaporation (black arrow), which indicates that the measured 

elasticity is associated with the total mass of the liquid bridge (see text for details). 


