Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

SUPPLEMENTARY INFORMATION

A new sodiation-desodiation mechanism of titania-based negative electrode

for sodium-ion battery

Changsheng Ding^a, Toshiyuki Nohira^{b,*} and Rika Hagiwara^{a,*}

^a Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
^b Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan

*Correspondence to: nohira.toshiyuki.8r@kyoto-u.ac.jp hagiwara@energy.kyoto-u.ac.jp

Experimental

Synthesis of cubic Na₂TiO₃ powders

NaOH (Wako) and anatase TiO₂ nanopowders (Sigma Aldrich) were used as raw materials to synthesize cubic Na₂TiO₃ (α -Na₂TiO₃) powders. The NaOH was first dissolved with pure water to form a 70 wt% solution in an Al₂O₃ crucible. The TiO₂ nanopowders were then dispersed into the NaOH solution by stirring. The mass ratio of NaOH and TiO₂ is 1.3:1. Finally, the mixture was put into an electric furnace and heated at 550 °C for 1 h. The calcined white sample was ground using a mortar and pestle to obtain Na₂TiO₃ powders, which were stored in an Ar-filled glove box until use.

Heating of Na₂TiO₃-TiO powders

Cubic TiO powders (High Purity Chemicals) and cubic Na_2TiO_3 powders with a molar ratio of 1:1 were ball-milled with dry type for 12 h at 600 rpm. The ball-milled mixture was heated at 200-600 °C for 5 h in Ar gas flow. The structure of the heated powders was investigated by means of X-ray diffraction (XRD, Rigaku SmartLab).

Electrode fabrication

Amorphous TiO₂ nanopowders (Alfa Aesar), cubic TiO powders and cubic Na₂TiO₃ powders with a molar ratio of 8:1:1 were ball-milled with dry type for 12 h at 600 rpm. The ball-milled TiO₂-Na₂TiO₃-TiO powders were then dried in vacuum at 120 °C overnight before being transferred into an Ar-filled glove box. And then, the TiO₂-Na₂TiO₃-TiO powders was mixed well with graphite and polytetrafluoroethylene (PTFE) at a weight ratio of 75:15:10 using a mortar and pestle to form a thin film, which was pressed onto an aluminium mesh current collector to form TiO₂/Na₂TiO₃/TiO working electrode. Na₂TiO₃/TiO working electrode was fabricated using the same method.

For comparison, amorphous TiO_2 working electrode was also fabricated using a conventional coating method. A slurry consisting of TiO_2 active material (75 wt%), graphite (15 wt%), and polyamide-imide (10 wt%) in *N*-methyl-2-pyrrolidone (NMP) was uniformly spread onto an Al foil. The electrodes were dried in vacuum at 120 °C overnight before being transferred into an Ar-filled glove box.

Electrochemical characterization

Charge-discharge tests were performed using a coin-type 2032 cell with a sodium foil counter electrode. The electrolyte used was the Na[FSA]-[C₃C₁pyrr][FSA] ionic liquid with molar ratio of 2:8. A glass fiber filter (Whatman, GF-A, 260 mm) was used as a separator. The working electrodes and separators were vacuum-impregnated with Na[FSA]-[C₃C₁pyrr][FSA] at 60 °C before assembling the cells. Charge-discharge testing was conducted at constant current rates of 20 mA g⁻¹ in the voltage range of 0.01-2.5 V at 90 °C.

Fig. S1. Electrochemical and structural characterization of the TiO_2/C electrode: (a) Chargedischarge curves by means of CC-CV charge (CC: 1000 mA g⁻¹ to 0.01 V; CV: 0.01 V until 1 mA g⁻¹ cutoff current), CC discharge (20 mA g⁻¹), and subsequent CC charge-discharge at 20 mA g⁻¹. (b) Ex-situ XRD patterns of the TiO_2/C electrodes at various charge/discharge stages as indicated in (a).

Fig. S2. SEM image of the TiO_2/C electrode charged to 0.01 V by CC-CV mode.

Fig. S3. EDX mapping analysis of the TiO_2/C electrode charged to 0.01 V: (a) SEM image, (b-f) The elemental mappings for Na, Ti, F, S and O, respectively.

Element	Point 1	Point 2
0	10.5	6.1
F	30.2	36.7
S	7.3	8.4
Na	52.0	48.8

Fig. S4. TEM-EDX point analysis of the TiO_2/C electrode charged to 0.01 V.

Table S1: The d values	calculated f	from electron	diffraction	pattern	of the	TiO ₂ /C	electrode
discharged to 2.5 V.							

Discharged TiO ₂ /C electrode		Cubic TiO Card No: 00-008-0117			
Spot	d	2theta	d	Ι	
1	2.39	37.33	2.407	45	
2	2.07	43.36	2.085	100	
3	1.47	62.96	1.475	50	
-	-	75.44	1.259	14	
4	1.19	79.47	1.205	12	
5	1.03	95.09	1.044	6	

Fig. S5. TEM images of the TiO_2/C electrode discharged to 2.5 V for EDX point analysis (Table S2).

Table S2: TEM-EDX point analysis results of the TiO_2/C electrode discharged to 2.5 V, and calculated molar ratio of Na, Ti and O.

	О-К	Na-K	Ti-K	Na	Ti	0
	at%	at%	at%	molar ratio		
Point 1	66.5	7.7	25.9	0.30	1	2.6
Point 2	54.9	9.6	35.5	0.27	1	1.5
Point 3	63.8	8.4	27.9	0.30	1	2.3
Point 4	61.6	10.5	27.9	0.38	1	2.2
Point 5	60.5	10.1	29.4	0.35	1	2.1
Point 6	65.7	8.1	26.2	0.31	1	2.5

Fig. S6. XRD patterns of ball-milled cubic Na_2TiO_3 and TiO powders heated at 200-600 °C in Ar gas flow.

Fig. S7: Ti 2p XPS spectra of TiO_2/C electrode charged to 0.01 V and TiO_2/C electrode discharged to 2.5 V, after Ar⁺ etching. (The binding energies of Ti^{4+} , Ti^{3+} , Ti^{2+} and Ti^0 come from NIST X-ray Photoelectron Spectroscopy Database.)

Fig. S8. Charge-discharge curves of the TiO_2 (amorphous) electrode at 20 mA g⁻¹.

Fig. S9. Charge-discharge curves of the Na₂TiO₃/TiO electrode at 20 mA g⁻¹.