Supporting information for

Water modulates the ultraslow dynamics of hydrated ionic liquids near CG rich DNA: consequence to DNA stability

Debasis Saha*, Mandar Kulkarni and Arnab Mukherjee*

Department of chemistry, Indian Institute of Science Education and Research Pune - 411008, Maharashtra, India

Cations considered in the study

Figure S1. (a) 1-butyl-3-methylimidazolium cation ([BMIM]⁺), (b) choline cation and (c) 1-butylpyridinum cation ([BPYR]⁺).

Scheme for stable state picture approach

Figure S2. Schematic of the SSP approach involved in the calculation of MRTs. Vertical dashed lines are the stable state boundaries; the left of the left line is considered to be reactant state when a solvent molecule is close to a particular site. The right of the right side line indicates the product state when the solvent is away from the DNA.

RDF and PMF plots for minor groove and phosphate atoms

Figure S3. The RDF (top panel) and PMF (bottom panel) plots for minor groove atoms of the DNAs with $[BMIM]^+$ (a and d), $[choline]^+$ (b and e) and $[BPYR]^+$ (c and f) respectively.

Figure S4. The RDF (top panel) and PMF (bottom panel) plots for phosphate atoms of the DNAs with $[BMIM]^+$ (a and d), $[choline]^+$ (b and e) and $[BPYR]^+$ (c and f) respectively.

Table S1. The distance cut-off taken for calculation of MRTs of IL cations.

II. solution	Reactant state cut-off (nm)			Product state cut-off (nm)		
ill solution	Major	Minor	Phosphate	Major	Minor	Phosphate
[BMIM][C1]	1.32	1.20	0.97	2	1.65	1.7
[Choline][Cl]	1.20	1.06	1.17	2.05	1.9	1.8
[BPYR][Cl]/ [BPYR][PF ₆]/[BPYR][BF ₄]	1.33	1.10	0.67	2	2	1.55

Comparison between proximal and conventional radial distribution function for water:

Figure S5. Comparison between proximal radial distribution function (black line) and conventional radial distribution function (red line) between major groove and water oxygen (a and c) and minor groove and water oxygen (b and d) for AT-DNA (a and b) and CG-DNA (c and d). The plots indicate the presence of peaks at similar distances from the site for both proximal and conventional radial distribution function with different peak heights.

IL solution	DNA	Site	C ₁ (%)	$ au_1(ns)$	C ₂ (%)	$ au_2$ (ns)	Correlation	χ^2
							coefficient	
AATT		Maj	91.2	1.79	8.8	59.06	0.99	3.57
	Min	88.3	1.67	11.7	57.5	0.99	5.02	
		Phs	90.2	1.37	9.8	60.35	0.99	3.25
[BMIM][CI]		Maj	85.2	10.16	14.8	463.23	0.99	7.99
	CGCG	Min	79.3	9.8	20.7	207.82	0.99	2.24
		Phs	73.8	7.09	26.2	76.69	0.99	1.12
		Maj	22.6	2.49	77.4	22.34	0.99	0.89
	AATT	Min	12.1	2.06	87.9	22.74	0.99	1.97
		Phs	40.9	1.17	59.1	21.92	0.99	0.47
[Choline][Cl]		Maj	85.1	15.32	14.9	1.56×10^{5}	0.99	27.19
	CGCG	Min	81.8	16.14	18.2	1.1×10^5	0.99	34.52
		Phs	75	7.87	25	59.58	0.99	2.8
		Maj	89.9	3.16	10.1	20.22	0.99	1.37
	AATT	Min	90.3	3.89	9.7	27.43	0.99	6.84
		Phs	86	2.65	14	24.1	0.99	1.23
[BPYR][CI]		Maj	82	7.77	18	407.48	0.99	6.83
	CGCG	Min	72.3	9.36	27.7	333.46	0.99	11.42
		Phs	79.9	5.76	20.1	282.83	0.99	2.99
		Maj	82.6	2.28	17.4	9.1	0.99	0.97
	AATT	Min	83.8	2.83	16.2	10.76	0.99	3.77
		Phs	80.9	1.89	19.1	11.04	0.99	0.9
$[BPYR][PF_6]$		Maj	86.9	4.04	13.1	35.18	0.99	4.35
	CGCG	Min	82.3	5.00	17.7	39.29	0.99	5.87
		Phs	76.6	2.58	23.4	26.28	0.99	3.06
		Maj	88.6	2.21	11.4	15.33	0.99	0.54
	AATT	Min	86.6	2.52	13.4	16.77	0.99	4.41
		Phs	82.7	1.91	17.3	16.06	0.99	1.59

Table S2. The coefficients, time scales and the fitting parameters for MRT calculation of IL cations.

		Maj	83.1	3.58	16.9	24.26	0.99	5.28
[BPYR][BF ₄]	CGCG	Min	79.1	4.69	20.9	28.73	0.99	7.59
		Phs	77	2.47	23	31.93	0.99	6.78

Error analysis.

To estimate the error in the MRT values, the 100 ns simulation with $[BPYR][BF_4]$ was divided into two 50ns segments and the C(t) was calculated for 25 ns. The $[BPYR][BF_4]$ solution was chosen for this since in this case, the correlation function decays rapidly for the IL cation and hence in 25 ns, the C(t) can be expected to reach close to zero. Fitting the data with a bi-exponential function, the timescales have been calculated from which we have calculated the error as:

S.D.=
$$\sqrt{((\tau_{100ns} - \tau_{50ns}^1)^2 + (\tau_{100ns} - \tau_{50ns}^2)^2)/2}$$

Table S3. The	e timescales with	different segm	ent of trajectory	/ and the error	associated v	with the MRT
values of [BPY	$[YR]^+$ and water.					

Solvent	Site	MRT (ns) from	MRT (ns) from	MRT (ns) from	S. D. (ns)
		100ns (τ _{100ns})	first 50ns (τ_{50ns}^1)	last 50ns (τ_{50ns}^1)	
	Maj	3.7	3.77	3.71	0.05
$[BPYR]^+$	Min	4.43	4.91	4.69	0.38
	Phs	4.36	4.65	4.49	0.22
Water	Maj	0.27	0.27	0.28	0.003
	Phs	0.18	0.18	0.19	0.008

Table S4. DNA parameters averaged for the middle four base pairs calculated in different IL solutions.

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	12.76	11.22
[Choline][Cl]	11.83	11.26
[BPYR][Cl]	13.68	12.13
[BPYR][PF ₆]	12.63	12.14
[BPYR][BF ₄]	12.43	11.82

(a) Major Groove Width (Å)

(b) Minor Groove Width (Å)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	5.94	6.7
[Choline][Cl]	6.53	7.13
[BPYR][Cl]	5.89	6.65

[BPYR][PF ₆]	5.2	6.88
[BPYR][BF ₄]	4.99	6.7

(c) Major Groove Depth (Å)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	4.93	3.86
[Choline][Cl]	5.58	4.00
[BPYR][Cl]	5.00	3.46
[BPYR][PF ₆]	4.58	4.42
[BPYR][BF ₄]	4.81	4.00

(d) Minor Groove Depth (Å)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	4.93	4.96
[Choline][Cl]	4.83	5.07
[BPYR][C1]	4.92	5.48
[BPYR][PF ₆]	5.21	5.05
[BPYR][BF ₄]	5.05	5.17

(e) Rise (Å)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	3.43	3.47
[Choline][Cl]	3.45	3.33
[BPYR][Cl]	3.45	3.4
[BPYR][PF ₆]	3.54	3.46
[BPYR][BF ₄]	3.52	3.41

(f) Roll (°)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	1.94	2.45
[Choline][Cl]	2.95	3.4
[BPYR][C1]	0.1	1.99
[BPYR][PF ₆]	-0.06	1.47
[BPYR][BF ₄]	0.1	3.3

(g) Tilt (°)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	0.92	-0.77
[Choline][Cl]	-0.51	0.51
[BPYR][Cl]	-0.19	1.46
[BPYR][PF ₆]	0.22	-1.63
[BPYR][BF ₄]	-0.86	0.4

(h) Twist (°)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	33.29	36.11
[Choline][Cl]	33.36	32.47
[BPYR][Cl]	33.31	33.87
[BPYR][PF ₆]	33.17	33.38
[BPYR][BF ₄]	34.57	33.41

(i) Slide (Å)

IL solution	AT-DNA	GC-DNA
[BMIM][Cl]	-0.19	0.34
[Choline][Cl]	-0.34	0.43
[BPYR][Cl]	-0.52	0.32
[BPYR][PF ₆]	-0.42	-0.07

[BPYR][BF ₄]	-0.29	0.15

IL solution	AT-DNA	GC-DNA
[BMIM][C1]	0.22	-0.11
[Choline][Cl]	-0.14	0.28
[BPYR][Cl]	-0.13	0.26
[BPYR][PF ₆]	0.00	-0.24
[BPYR][BF ₄]	0.01	0.01

(j)	Shift	(Å)
-----	-------	-----

RDF and PMF plot for water near phosphate atoms in different IL solutions.

Figure S6. The RDF (top panel) and PMF (bottom panel) plots for the phosphate atoms of the DNAs with water oxygen in [BMIM][C1] solution (a and d), [Choline][C1] solution (b and e) and [BPYR][C1] solution (c and f), respectively.

RDF plots between water and minor groove atom in [BMIM][Cl] and [Choline][Cl] solution.

Figure S7. The RDF plot between minor groove atoms of AT and CG-DNA with water oxygen atoms in [BMIM][Cl] solution (a) and [Choline][Cl] solution (b).

IL solution	DNA	Site	C ₁ (%)	$ au_1(ns)$	C ₂ (%)	$ au_2$ (ns)	Correlation coefficient	χ^2
		Maj	89.3	0.15	10.7	0.84	0.99	0.06
	AATT	Phs	91.8	0.08	8.2	0.57	0.99	0.06
[BMIM][Cl]		Maj	88.4	0.91	11.6	6.55	0.99	0.19
	CGCG	Phs	23.3	2.15	76.7	0.42	0.99	0.31
		Maj	82.0	0.21	18	0.83	0.99	0.08
	AATT	Phs	21.6	0.54	78.4	0.08	0.99	0.19
[Choline][Cl]		Maj	95.1	0.91	4.9	14.74	0.99	0.23
	CGCG	Phs	75.9	0.42	24.14	1.89	0.99	0.28
		Maj	86.8	0.16	13.2	0.71	0.99	0.04
	AATT	Phs	84.5	0.08	15.5	0.47	0.99	0.09
[BPYR][Cl]		Maj	88.5	0.77	11.5	3.96	0.99	0.25
	CGCG	Phs	80.3	0.36	19.7	1.79	0.99	0.21
		Maj	92.1	0.14	7.9	0.73	0.99	0.05
	AATT	Phs	84.1	0.06	15.9	0.35	0.99	0.07
[BPYR][PF ₆]		Maj	100	0.46	0	0	0.99	1.84
	CGCG	Phs	80.1	0.18	19.9	0.73	0.99	0.09
		Maj	93.6	0.15	6.4	2.06	0.99	0.16
[BPYR][BF ₄]	AATT	Phs	92.4	0.08	7.6	1.4	0.99	0.37
		Maj	92.6	0.42	7.4	2.69	0.99	0.21
	CGCG	Phs	87.9	0.21	12.1	1.33	0.99	0.21

Table S5. The MRT calculation results for water in different IL solutions. Sites containing major groove atoms and the phosphate atoms are denoted as Maj, Phs, respectively.

Table S6. Time scales obtained from calculation at 25 wt% of [BMIM][Cl] for the two DNA systems.

DNA	Solvent	Site	C ₁ (%)	$\tau_1(ns)$	C ₂ (%)	$ au_2$ (ns)	Total time
							scale (ns)
		Maj	82.6	0.91	17.4	7.06	1.98
	BMIM	Min	77.4	0.82	22.6	6.86	2.18
AI-DNA	cation	Phs	79.1	0.63	20.9	6.53	1.87
		Maj	96.4	0.09	3.6	6.28	0.11
	Water	Phs	92.2	0.04	7.8	2.51	0.06
		Maj	74	2.06	26	10.92	4.37
GC-DNA	BMIM cation	Min	66.1	1.73	33.9	10.53	4.71
		Phs	71.8	1.47	28.2	10.39	3.99
		Maj	93.4	2.32	6.6	1.29	0.30
	Water	Phs	86.2	1.13	13.8	0.59	0.18

Solvent	Site	C ₁ (%)	$\tau_1(ns)$	C ₂ (%)	τ_2 (ns)	Total time
						scale (ns)
	Maj	88.4	1.47	11.6	33.98	5.23
BMIM cation	Min	84.7	1.31	15.3	33.6	6.25
	Phs	86.8	1.14	13.2	32.99	5.35
	Maj	100	0.15	0	0	0.15
Water	Phs	84	0.07	16	0.22	0.09

Table S7. Values obtained from calculation of MRTs for poly-AT DNA system in 50 wt% [BMIM][Cl] solution.

Interaction energies between different sites in DNA and water from simulation at 0% IL.

Figure S8. The interaction energies between water and major groove (a), minor groove (b) and phosphate group (c) of the DNAs simulated in pure water.

Table S8. The number of water near different sites and box volume for the two DNA systems in pure water.

Site	Number of w	ater molecules	Box volume (nm ³)	
	AATT	CGCG	AATT	CGCG
Major groove	259	326		
Minor groove	237	314	398	301
Phosphate	537	714		