SUPPORTING INFORMATION

N-Terminal Lipid Conjugation Leads to the Formation of N-Terminally Extended Fibrils

Juliane Adler,¹ Holger A. Scheidt,¹ Katharina Lemmnitzer,¹ Martin Krueger,² and Daniel Huster^{1,*}

¹Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany

²Institute for Anatomy, Leipzig University, D-04103 Leipzig, Germany

Corresponding author:

Tel: +49 (0) 341 9715701 Fax: +49 (0) 341 9715701 e-mail: daniel.huster@medizin.uni-leipzig.de

Table S1. Isotropic ¹³C and ¹⁵N chemical shifts (δ , relative to TMS) and order parameters (*S*) for fibrils of the investigated lipidated A β (1-40) hybrids and A β (1-40) wildtype¹ determined by ¹³C and ¹⁵N CP MAS NMR spectroscopy at 30°C

			octanoyl-Aβ (1-40)		palmitoyl-Aβ (1-40)		A β (1-40) wildtype ¹	
Residue		δ/ppm	S	δ/ppm	S	δ/ppm	S	
Ala ₂	Cα	48.0	0.91 ± 0.09	48.5	0.90 ± 0.09	50.6	0.65 ± 0.06	
	Сβ	20.0	0.47 ± 0.05	20.9	0.21 ± 0.02	17.1	0.21 ± 0.02	
			0.24 ± 0.02					
	СО	173.6		173.4		173.1		
	N	125.4		122.93				
Phe ₄	Cα			54.6	0.85 ± 0.09	55.6	0.61 ± 0.1	
	Сβ			39.4	0.76 ± 0.08	37.8	0.84 ± 0.1	
	C1			136.7				
	C2 - C6			129.0				
	C4							
	СО			172.5				
	N							
Ser ₈	Cα			56.8	0.81 ± 0.08	56.7	0.74 ± 0.06	
	Cβ			62.0	0.54 ± 0.05	61.7	0.42 ± 0.04	
	CO			172.5				
	N							
Gly ₉	Cα			43.4	0.86 ± 0.09	43.3	0.84 ± 0.06	
	CO			171.6		170		
	N							
Val_{12}	Cα			58.8	0.85 ± 0.09	58.3	0.94 ± 0.12	
	Cβ			32.7	0.74 ± 0.07	32.5	0.59 ± 0.05	
	Сү			19.4	0.22 ± 0.01			
	CO			172.5				
	N							
Phe ₁₉	Cα	54.0	0.89 ± 0.09	53.6	0.89 ± 0.09	54.1	0.82 ± 0.06	
	Cβ	39.3	0.91 ± 0.09	40.8	0.90 ± 0.09	40.3	0.75 ± 0.05	
	C1	136.6		136.8				
	C2 - C6	128.5		129.2		129.0		
	C4	125.1		126.4				
	СО	171.2		170.6		171.8		
	N	125.4		125.3				
Gly ₂₅	Cα	44.7	0.96 ± 0.1	43.2	0.91 ± 0.09	45.1	1.00 ± 0.15	
	СО	169.4		170.1		170.0		
	N	110.81		111.41				
		116.1		113.4				
Val ₃₉	Cα	58.7	0.90 ± 0.09	58.8	0.89 ± 0.09	59.2	0.84 ± 0.06	
	Cβ	33.0	0.80 ± 0.08	33.1	0.72 ± 0.07	33.3	0.72 ± 0.05	
	Сү	19.3	0.24 ± 0.02	19.5	0.21 ± 0.02	19.6	0.21 ± 0.02	
	СО	171.9		172.7		172.3		
	N	118.4		120.3				

Figure S1. Thioflavin T (ThT) fluorescence intensity of wildtype $A\beta(1-40)$ (black) and $A\beta(1-40)$ in the presence of octanoic acid (red) and palmitic acid (blue) as a function of time. Peptide and free fatty acid concentrations were 230 µM each. Data were fitted using functions discussed in the literature.² Measurements were performed in a 96 well plate and the following shaking protocol was used: 30 min cycles (2 s of shaking (at 2 mm shaking amplitude), 5 min waiting, 2 s shaking, 5 min waiting, 2 s shaking) followed by the measurement. For WT A $\beta(1-40)$, a $t_{lag} = 35.0$ h and a $t_{char} = 39.2$ h was determined under these conditions. In the presence of octanoid acid, these time constants were reduced to $t_{lag} = 19.9$ h and a $t_{char} = 30.3$ h. In the presence of palmitic acid, the time constants were $t_{lag} = 34.0$ h and a $t_{char} = 43.1$ h.

Figure S2. X-ray diffraction patterns of fibrils of $A\beta(1-40)$ (black), octanoyl- $A\beta(1-40)$ (red) and palmitoyl- $A\beta(1-40)$ (blue). The typical cross- β intersheet distances are indicated.

Figure S3. ¹³C CP-MAS-NMR spectra of octanoyl-A β (1-40) and palmitoyl-A β (1-40) measured at 30°C using an MAS frequency of 11,777 Hz. Signal assignment for the labeled residues (Ala₂, Phe₁₉, Gly₂₅, Val₃₉) is given.

Figure S4. Contour plot of ¹³C-¹³C DARR-NMR spectra of (A) octanoyl-A β (1-40) and (B) palmitoyl-A β (1-40) fibrils, measured at 30°C using a mixing time of 600 ms and an MAS frequency of 11,777 Hz.

Reference List

- 1. Scheidt, H. A.; Morgado, I.; Rothemund, S.; Huster, D. Dynamics of amyloid beta fibrils revealed by solid-state NMR. *J. Biol. Chem.* **2012**, *287*, 2017-2021.
- Nielsen, L.; Khurana, R.; Coats, A.; Frokjaer, S.; Brange, J.; Vyas, S.; Uversky, V.N.; Fink, A.L. Effect of environmental factors on the kinetics of insulin fibril formation: Elucidation of the molecular mechanism. *Biochemistry* 2001, *40*, 6036–6046.