Supporting Information

Solution Plasma Synthesis of Boron-Carbon-Nitrogen Catalyst with Controllable Bond Structure

SeungHyo Lee^{a*}, YongKang Heo^a, Maria Antoaneta Bratescu^a, Tomonaga Ueno^a and Nagahiro Saito^{a, b}

^a Graduate School of Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan

^b CREST, Japan Science and Technology Agency, Goban-cho, Chiyoda-ku, Tokyo, Japan

Corresponding author : seunghyo@rd.numse.nagoya-u.ac.jp

Koutecky–Levich (K–L) analysis 43

$$1/j = 1/j_{L} + 1/j_{k}$$
(1)

$$1/j = 1/B\omega^{1/2} + 1/j_{k}$$
(2)

$$B = 0.201 \text{ n FA } C_{02}D_{0}^{2/3} \text{ v}^{-1/6}$$
 $\omega^{1/2}$ (3)

where, j is the measured current density (mA/cm²), j_k and j_L are the kinetic and diffusionlimiting current densities (mA/cm²), ω is the angular velocity of the disk in rpm, F is the Faradays constant (F= 96485 C mol⁻¹), n is the number of electrons transferred per oxygen molecule, C_o * and D_o are the oxygen bulk concentration (1.2 x10⁻³ mol cm⁻³) and diffusion coefficient of O₂ (1.9 X 10⁻⁵ cm² s⁻¹), respectively, and v is the kinematic viscosity of the electrolyte (1.1 × 10⁻² cm² s⁻¹).

Fig. S1 Electrochemical measurements of B/N uncoupling: (a) CV curves of the ORR in O_2 and N_2 -saturated 0.1M KOH solutions at a scan rate of 10 mV s⁻¹. (b) LSV curves of the ORR in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ with different rotation speeds from 400 to 2500 rpm. (c) The Koutecky-Levich (K-L) plots of current density⁻¹ versus $\omega^{-1/2}$ at various potentials obtained from LSV curves in an O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹. (d) The number of transferred electrons calculated from the slopes of the K-L plots in (c).

Fig. S2 Electrochemical measurements of B/N coupling: (a) CV curves of the ORR in O_2 and N_2 -saturated 0.1M KOH solutions at a scan rate of 10 mV s⁻¹. (b) LSV curves of the ORR in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ with different rotation speeds from 400 to 2500 rpm. (c) The Koutecky-Levich (K-L) plots of current density⁻¹ versus $\omega^{-1/2}$ at a various potentials obtained from LSV curves in an O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹. (d) The number of transferred electrons calculated from the slopes of the K-L plots in (c).

Fig. S3 Wide-field TEM images with selected-area electron diffraction (SAED) of (a) CB, (b) CN, and (c) B/N coupling. (d) SEM images of all nanocarbons.

Fig. S4 Contrast line profiles of B/N uncoupling.

Fig. S5 Narrow scan XPS of (a) B/N uncoupling and (b) B/N coupling for C1s. The four deconvoluted peaks in the high resolution C1s spectrum at 283.4, 284.7, 286.2 and 288.3 eV can be attributed to C-B, C=C, C-N and C-O bonds, respectively.¹³

Case 1: B-C-N, Case 2: B-C-C-N Case 3: B-C-C-N, Case 4: B-C-C-C-N - - - etc.

Fig. S6 Possible schematic structure of BCN nanocarbon: (a) B/N uncoupling and (b) B/N coupling.

(a) Chemical state containing B atom (%)								
	B cluster	B ₄ C I	BC ₃	BC ₂ O	BCO ₂	B ₂ O ₃	B-N	
Before	23.2	8.9	8.9	25	14.3	16.1	3.6	
After	5.5	12.7	2.7	18.2	25.5	21.8	3.6	
(b) Chemical state containing N atom (%)								
	B-N	Pyridinic	N P	yrrolic N	Graphit	tic N	Oxidic N	
Before	0	28.6		31.4	39.4	4	0.6	
After	0	31.3		31.6	32.0	5	4.5	
(c) Chemical state containing Pt atom (%)								
	Pt ⁴⁺ (4f5/2)	Pt ⁴⁺ (4f7/2)	$Pt^{2+}(4$	-f5/2) P	$t^{2+}(4f7/2)$	Pt ⁰ (4f5/2)	Pt ⁰ (4f7/2)	
Before	2.8	3.1	7.	5	11	40.8	34.8	
After	4.6	5.6	15	.8	20.1	26	27.9	

Table S1 Relative content of (a) B atom (b) N atom and (c) Pt atom before and after chronoamperometry test.

Fig. S7 XPS narrow scan after durability experiment of (a) Pt4f of 20 wt. % Pt/C and the relative element contents before and after the chronoamperometry for (b) Pt.

Fig. S8 OES spectra of the SPP in pure pyridine for synthesis CN (nitrogen doped carbon).