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1 Additional validation of theory level

As discussed in the main text, BLYP-D2 has been shown to correctly reproduce the density
of bulk liquid water. We confirmed that the level of theory used for the majority of the
calculations, BLYP-D2/DZVP, correctly reproduced the density and H-bond populations
of the water molecules in the slab. We also ensured that the radial distribution functions
(RDFs) in the water slab (interior region) and in the bulk water agree reasonably with one
another and that the latter agree well with experiment. This was described in our recent
work on HCI scattering from water using the identical setup, see ref. [1l and its ESI.

Thus, here we restrict ourselves to confirming that BLYP-D2/DZVP correctly describes
the geometries of HyO, trans-HCOOH, and the transs-HCOOH- - - H,O minimum energy com-
plex (designated structure FAZ1 in ref. 2)). Fig.[S1|shows that with all basis sets, the complex
assumes a nonplanar geometry, with the free OH of the water pointing out of the plane es-
tablished by the formic acid (FA) or the heavy atoms of the complex. Two hydrogen bonds
are present. This is also in good agreement with the B3LYP“ and MP2 benchmarks,” as
well as with the structure obtained experimentally.?

In Table|S1jand Fig. |[S1]it is seen that the monomer and dimer geometries are reasonably
reproduced by BLYP-D2, even with the DZVP basis set, although DZVP-MOLOPT-SR
and TZV2P give slightly better converged results for the geometries. Comparing BLYP-
D2/DZVP to BLYP-D2/TZV2P, the average differences in intramolecular bond lengths and
bond angles are ~ 0.01 A and ~ 1°, respectively. The differences in the intermolecular
parameters are sometimes larger, being in one instance ~ 0.02 A and ~ 2°. Comparing to
the B3LYP? and MP2 benchmarks,” the agreement is also reasonable.

With regard to the interaction or binding energy (—D,) of the complex, it is seen by
comparing BLYP/TZV2P and BLYP-D2/TZV2P that the dispersion correction deepens it
by about 20%. The dispersion correction has negligible effects on the structures of the
monomers or the dimer. However, as mentioned, it is critical for correct description of liquid

water, and thus it is necessary to retain it.



For clusters, the only significant issue with use of the DZVP basis set is that it does
lead to a deepening of about 17% in the interaction energy (compare interaction energy
obtained with BLYP-D2/DZVP to that obtained with BLYP-D2/DZVP-MOLOPT-SR or
BLYP-D2/TZV2P; the deepening is mainly due to basis set superposition error—BSSE).
However, in this work we are mainly interested in forces for molecular dynamics and the
dimer structures in Fig. and Table |[S1| are nearly identical, indicating that the forces are
well-represented with the smaller basis set. Thus we consider DZVP a reasonable compromise
given the computational costs of calculating many molecular dynamics trajectories for large

systems.
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Figure S1: Geometries of the minimum energy trans-HCOOH: - - HyO complex (FAZ1) as
obtained using BLYP or BLYP-D2 with various basis sets. See Table[SI]and text for details.



2 Scattering simulations of formic acid at the air-water

interface: Additional results

2.1 All scattering trajectories: Formic acid height above water

surface and hydroxyl bond length

As discussed in the main text, we calculated at the simulation temperature of 300 K a
total of 45 scattering trajectories with durations of 850 ps. Of these, 37 were thermal
scattering/gentle landing trajectories, and 8 were trajectories with added kinetic energies
nkgT, n=1,2,4,10 (2.5, 5.0, 10.0, or 24.9 kJ/mol, respectively), directed downward at 45°
to the surface normal.

The main text discussed and presented 6 trajectories, all of the thermal scattering/gentle
landing type. Figs. and present the FA height above the water surface z and its
hydroxyl O-H bond length roy for all 45 trajectories. In each figure, panel (a) shows the
initial 10 ps to allow a better view of initial events while panel (b) presents the full simulation
time. As observed in the main text, adsorption is seen exclusively over this relatively short
time period, and trajectories 1 and 2 are seen to dissociate. However, many other trajectories
do experience stretched O-H bonds.

In general, the trajectories with added kinetic energy, marked nkT (a,b), n = 1,2, 4,10,
do not behave differently from the trajectories with only thermal collision energy with regard
to deprotonation, as seen in Fig. [S3| This is unlike the case of the strong acid HCI colliding
with the water surface, where increasing its collision energy generally resulted in faster
deprotonation.” In Fig. |S2|the trajectories with added kinetic energy do require 2-3 ps longer
to stabilize their height z at the air-water interface. Further studies of the equilibration of

such collisions is the subject of future work, and is beyond the scope of this paper.
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3 Equilibrium simulations of formic acid in aqueous

environments: Additional results

3.1 Formic acid hydroxyl bond length

Fig.|S4|shows the FA hydroxyl bond length roy from the equilibrium simulations (production
portions) of FA in the four aqueous environments. FA in the subsurface is observed to

spontaneously deprotonate.

3.2 Formic acid H-bonds with water

Fig. shows time series of the number of H-bonds that FA forms with water molecules
for the four aqueous environments. These data were obtained from equilibrium simulations.
Table 1 in the main text summarizes the H-bond results in terms of averages.

Spontaneous deprotonation was observed when FA was placed in the subsurface. The

arrows labeled b—f refer to the snapshots shown in Fig. [S6]

3.3 Formic acid spontaneous deprotonation observed in the sub-

surface equilibrium calculation

The panels in Fig. [S6] show snapshots from the equilibrium simulation of FA constrained at

the subsurface. Spontaneous deprotonation and PT is seen.

3.4 Formic acid orientation at the air-water interface

The distributions for the remaining two orientation angles we considered (see Fig. 1 of the
main text for definitions of the orientation angles) are presented in Fig. These are
not independent from the two presented in the main text. As the FA transitions from the

surface into the subsurface, it rotates from an initial nearly vertical orientation to a leaning



orientation. This is most clearly seen in the change of the angle between the plane of the

FA molecule and the z-axis, 6,, which changes from about 97° to about 27°.
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Figure S4: The O-H separation in FA is shown is shown for equilibrium simulations in the
four aqueous environments (bulk water, and center, subsurface, and surface of the water
slab). The dashed black lines mark the approximate O-H separations for various states of
the aqueous FA.
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4 Metadynamics simulations: Background and addi-
tional details

In order to better explore the deprotonation mechanisms of FA in these aqueous systems and
obtain the free energy of dissociation barriers, an enhanced sampling method was required.
We employed metadynamics,*® in particular, well-tempered metadynamics (WTmetaD),®
which has been shown to converge asymptotically.” See also ref. [§ for a recent review. The
WTMetaD simulations always began with an equilibrated structure (with neutral, trans-FA).
As in ref. 9, we examined the activity of the interface by constraining the C atom of FA at
two heights in the interfacial region, at the subsurface (z = zgps — 1 A = 3.45 A), at the
subsurface (z = zgps + 1 A = 5.45 A), and at the center of the slab (z = 0 A). The last
result can be compared to the analogous calculation where FA is solvated in the bulk liquid
water with 63 water molecules. After an equilibration in the NV'T" ensemble, the WTMetaD
calculations were performed in the same ensemble. Thus, the free energy differences are
properly Helmholtz free energy differences AF', but, with our slab setup, where the internal
pressure will be approximately constant, they approximate Gibbs free energy differences AG.
For the case of the liquid water simulation, this is even more approximate.

Additional information on the selection of collective variables and on both metadynamics
and well-tempered metadynamics can be found in refs. 4681012/ and in the PLUMED
2 package and documentation.** Briefly, in metadynamics, the configurational space is

explored with a total potential
Ulr,s,t) = Uy(r) + V (s, 1), (1)

where Uy is the unbiased interatomic potential, V' is the applied bias potential, r = (x1, y1, 21,
.., TN, YN, zn) is the full set of nuclear coordinates within a system of N atoms, and the

chosen set of metadynamics variables that one wishes to sample is in general a vector of
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dimension d of collective variables (CVs) dependent on the nuclear coordinates (it may be
explicitly dependent on only a subset thereof), s = s(r), s = (s1, S2,...,54). In practice, d
is no more than 3 and usually 2 or even 1. The bias potential is time-dependent (i.e., its
history is recorded) to ensure that previously visited regions of CV phase space (s') at prior
times (t') are avoided, thus ensuring more efficient sampling. This is done by depositing

small repulsive Gaussians centered at s’. Thus, the form of the cumulative bias potential is

t'<t d (S‘ B 5,4)2
V(s t) = Wexp | — Z 2—21 ; (2)
t'=16.27G,... i=1 i

where 7¢ is the time interval between depositing Gaussians, s = s(r(t)) is the instantaneous
value of the CVs, s’ = §/(r(t)) are previously visited positions which are the centers for
deposited Gaussians, o is the vector of Gaussian widths corresponding to s, and W is the
constant height of the Gaussian.

In well-tempered metadynamics (WTMetaD), overfilling of basins in the multidimen-
sional energy surface is prevented and sampling of the CV space enhanced by making the
height W history dependent as well,

W =W(t) =W, exp (—%) , (3)

where AT is chosen to be a few times the system temperature 7. This ensures that the
sampling of s is performed at the higher temperature 7'+ AT (one speaks of the acceleration
factor, 7, v = T£5L). Note that the dependence of W on V/(s,t — 7¢) implies that the
Gaussian height depends on the cumulative bias of the previous step, thus avoiding a circular
definition. As the run proceeds, the incremental bias approaches zero and the total bias
approaches a constant value.”

The usefulness of metadynamics is that in the long time limit, it converges to the free-

16



energy surface (plus an additive constant),

V(s,t - o0) =—F(s)+C. (4)
Similarly, for WTMetaD,
AT

In WTMetaD, the parameter AT controls the free-energy surface exploration. The limits
are clear: AT = 0 corresponds to standard molecular dynamics, and AT — oo to standard
metadynamics.

After some experimentation and tuning, the following parameters (which are typically
found also in refs. [6/7) were selected. A single CV, s = s = non, which measures the
coordination of the hydroxyl oxygen of FA by its H atom was found to be relevant,

()
ro

NoH = ——— \m> (6)
()

T0

where roy is the instantaneous FA hydroxyl bond length. Use of coordination number
rather than bond length as a CV has been shown to be more robust for exploring aqueous
deprotonation and proton transfer (PT), particularly in stabilizing and better sampling short-
lived states such as the CIP and SSIP.%® The formula eqn @ and the parameters 7o = 1.6 A,
n = 6,m = 12 are typical, and are chosen so that as the system transitions from neutral FA
to ionized FA (CIP and SSIP), non varies smoothly from about 1 (in practice about 0.9) to
about 0 (in practice about 0.3).

The other parameters were also typical and were likewise tested before use. The depo-
sition rate for Gaussian hills was 250 steps (7¢ = 125 fs), the Gaussian width selected for
sampling the space in a reasonable manner was o = o = 0.03 (approximately equal to the

size of the fluctuations in an unbiased simulation, as observed by analyzing the preceding un-
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biased NV T trajectory using PLUMED), and the initial Gaussian height was Wy = 5 x 107%
Hartree = 1.3128 kJ/mol = 0.3138 kcal/mol (approximately 0.1 of the FA deprotonation
barrier height). We chose AT = 1200 K (CV temperature of 1500 K and v = 5). The WT-
MetaD simulations were run for 14-18 ps. We confirmed good sampling and convergence of

the relevant portions of nog and of the relevant free energy differences.
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5 Metadynamics simulations of formic acid in aqueous

environments: Additional results

5.1 Formic acid H-bonds with water

Fig. shows the number of H-bonds that FA forms with nearby water molecules in the
metadynamics trajectories in the four aqueous environments. It is seen that the number
of H-bonds increase as formate is formed. The arrows labeled b—d for the bulk water and
subsurface metadynamics simulations refer to the snapshots shown in Fig. 11 of the main

text.

5.2 Formic acid free energy of deprotonation

Fig. (a—b) shows the sampling of the four metadynamics simulations in the CV, noy, and
also in the oy coordinate. The initial barrier (states a and T'S,,, corresponding to the initial
neutral trans-FA and the initial barrier to the shared proton state, respectively, see the main
text for details) are well-converged while the other states (b, ¢, and d, corresponding to the
shared proton, CIP, and SSIP states) are more approximate in some of the four simulations.

See Fig. 11 in the main text for the obtained deprotonation free energy profiles.
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