Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Structure of Germanium Phosphide Monolayer and Li-diffusion in Its

Bilayer

Fazel Shojaei

Department of Chemistry and Bioactive Material Sciences and Research Institute of Physics

and Chemistry, Jeonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea

and

Hong Seok Kang*

Department of Nano and Advanced Materials, College of Engineering, Jeonju University,

Hyoja-dong, Wansan-ku, Chonju, Chonbuk 560-759, Republic of Korea

*Corresponding author: <u>hsk@jj.ac.kr</u>

Description 1: Li-diffusion along a direction on the GeP monolayer

Here, we investigated the Li diffusion along the *a* (//X) direction. It will be quite reasonable to assume that the diffusion follows stepwise paths along the hollow sites in Figure 2, i.e., A \rightarrow B \rightarrow E \rightarrow C \rightarrow F \rightarrow D \rightarrow A, repeatedly. Figure 4 shows that the activation barriers are 0.09, 0.34, 0.08, 0.12, 0.04, and 0.01 eV for steps A \rightarrow B, B \rightarrow E, E \rightarrow C, C \rightarrow F, F \rightarrow D, and D \rightarrow A, respectively. We note that site E practically corresponds to the saddle point. Therefore, the rate-determining step is B \rightarrow C, and the activation barrier (*E*_a) for the diffusion along the *a* axis is 0.43 eV. In turn, the barrier is inaccessible at room temperature, because the Boltzmann factor corresponding to the fraction of Li atoms with the barrier is only 5 × 10⁻⁸. In short, the Li atoms cannot diffuse along the armchair path on the monolayer.

Description 2: Li-diffusion path P_b^1 in the interlayer region of GeP bilayer

Considering that site A is the most stable for the monolayer, we began our discussion on four nonequivalent steps to adjacent sites starting from site A_1F_2 , i.e., $A_1F_2 \rightarrow B_1T_2$, $A_1F_2 \rightarrow D_1T_2$, $A_1F_2 \rightarrow T_1C_2$, and $A_1F_2 \rightarrow T_1D_2$. Our NEB calculation shows that the diffusion occurs along the first path exclusively, considering that their activation barriers are 0.24, 0.52, 0.53, and 0.57 eV, respectively. [Here, we recall that $A_1F_2 \rightarrow D_1T_2$ and $A_1F_2 \rightarrow T_1D_2$ steps are inequivalent, although D_1T_2 and T_1D_2 sites are equivalent.] Next, there are again four inequivalent steps from B_1T_2 to adjacent sites, i.e., $B_1T_2 \rightarrow A_1F_2$, $B_1T_2 \rightarrow E_1E_2$, $B_1T_2 \rightarrow T_1C_2$, and $B_1T_2 \rightarrow T_1D_2$, for which barriers are 0.07, 0.35, 0.37, and 0.71 eV, respectively. Therefore, the preferred path will be $A_1F_2 \rightarrow B_1T_2 \rightarrow A_1F_2$ repeatedly with barriers of 0.24, 0.07, and 0.24 eV, as shown in Figure 6(a).

Description 3: Alternative Li-diffusion paths connecting P_b^1 to P_b^2 in the interlayer region of GeP bilayer

Next, we focused on various paths connecting P_b^{1} to P_b^{2} staring from B_1T_2 . Its first step will be $B_1T_2 \rightarrow E_1E_2$, considering that its barrier is comparable to that for graphene bilayer. There are also four inequivalent steps from E_1E_2 : $E_1E_2 \rightarrow T_1B_2$, $E_1E_2 \rightarrow B_1T_2$, $E_1E_2 \rightarrow C_1T_2$ and, $E_1E_2 \rightarrow T_1C_2$, for which barriers are 0.19, 0.20, 0.28, and 0.30, respectively, indicating that all of them are accessible. This is because their activation barriers are lower than or comparable to that (= 0.34 eV) for graphite. Now, we can define alternative paths connecting P_b^{1} and P_b^{2} paths. The one with the lowest barrier is denoted by P_{a1}^{1} : $B_1T_2 \rightarrow E_1E_2 \rightarrow T_1B_2$, for which stepwise barriers of 0.35 and 0.19 eV are certainly higher than those for a set of paths P_b by at least 0.11 eV. Consideration of the Boltzmann factor suggests that the diffusion from P_b^{1} to P_b^{2} along the *a* axis through P_{a1}^{1} will be ~100 times slower than those along the *b* axis. It is clear that there are other less accessible paths connecting P_b^{1} to P_b^{2} in terms of the activation barriers comparable to that for graphite bilayer, such as $B_1T_2 \rightarrow E_1E_2 \rightarrow C_1T_2 \rightarrow$ F_1A_2 .

Description 4: an alternative Li-diffusion path connecting P_b^2 to P_b^3 in the interlayer region of GeP bilayer

For comparison, we have also considered another path staring from T_1B_2 instead. Along the same direction, there is only one inequivalent step: $T_1B_2 \rightarrow D_1T_2$, for which the barrier of 0.64 eV is even lager.

Figure S1. Two different views of the charge density plot for the VBM at *S*' point (a,b), the CBM at Y''(c,d), the second CBM at the Γ points (e,f), and the VB-1 at Γ (g,h). The brown and green colors represent phosphorus (P) and germanium (Ge) atoms, respectively.

