Supplemental Materials for the pa-
per “Diffusive escape through a nar-
row opening: new insights into a
classic problem”n

SM1 Numerical simulations

In this part of the Supplemental Materials we briefly discuss two
numerical procedures used to check our theoretical predictions.

SM1.1 Numerical computation by a finite elements method
To verify the accuracy of the SCA, we solve the Poisson equation
(2, 3) by using a finite elements method (FEM) implemented in
Matlab PDEtool. This tool solves the following equation:

—V(cVu)+au=f, (S1)

where ¢ is a 2x2 matrix, and a and f are given functions.

In our case, we need to deal with the Laplace operator in radial
or spherical coordinates. In two dimensions, the original equation
(3) can be written in radial coordinates as

(52)

.
J %\

witha=0, f = re_U(’)/D, and

re=U () 0
c= < 0 e*U(’")/F ) : C

In three dimensions, the Poisson equation (2) reads in spherical
coordinates as

from which

Lo (12U el .
= (rie o )u+ 2 mae(smeae)u
e_U(r) e_U(r)
e T T D e

Since our solution does not depend on ¢, the last term on the
left-hand side can be omitted so that

)
5 %\ .

with a =0, f = r2e Y sin6/D, and

r?e U sing 0
. ( 0 e Using |- (57)

We set the computational rectangular domain V = [0, 1] x [0, 7]

44 Throughout these Supplementary Materials, we refer to the bibliography of the pa-
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with mixed boundary conditions (4), i.e., a zero flux condition for
dV\I'y, except for the segment I'y = {1} x [0, €] representing the
EW (see Fig. S1):

(&u + gu) T 0  (onTy),
(Qu)—1 =0  (onTYy),
(Orit)r—o=0  (onT3), (s8)
(Jpu)g—o=0  (onTy),
(Jou)g—r =0  (onT?).

In Matlab, the generalised Neumann boundary condition has the
form
- (cVu)+qu=g, (S9)

where the matrix c is the same as in the PDE (S1). We set g =0
and

q=Re YW /D (onTy),
(S10)
qg=0 (OHF1UF2UF3UF4)
in two dimensions, and
¢=R*sin6 e VWx/D  (onTy).
(S11)

q=0 (01’1F1UF2UF3UF4)

in three dimensions. For fully reactive EW (k = o), the Dirichlet
boundary condition is imposed on I'.
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Fig. S1 The original domain (half-disc) and the associated computational
domain (rectangle). Similar in 3D case.

SM1.2 Monte Carlo simulations

We also compute the distribution of first passage times to the EW
by simulating diffusion trajectories which end up at the EW. In
practice, we solve a Langevin equation by the following iterative
procedure: after generating a uniformly distributed starting point
ro, one re-iterates

rp+1 =1, + D6 £(r,)+V2DS §,, (812)
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where § is a one-step duration, r, is the position after n steps, f =
—d,U(r)e, is the normalised applied force in the radial direction
er, and & is the normalised random thermal force. For instance,
we have in two dimensions:

Xn1 = Xn +Dé f(|rn|) xn/|rn| +V2Dé éx,ns
(S13)
Y+l =Yn +Do f(|rn|) )’n/|rn| +V2Do éy,n»

where x,/|r,| and y,/|r,| represent cos(0) and sin(6) in the pro-
jection of the radial force, and &, ,, &, are independent normal
variables with zero mean and unit variance.

At each step, one checks whether the new position (x,11,V,+1)
remains inside the disk: x,zl 1t yﬁ < RZ. If this condition is not
satisfied, the particle is considered as being on the boundary. If
the particle hits the EW, the trajectory simulation is stopped and
nd is recorded as the generated exit time. Otherwise, the parti-
cle is reflected back and continues to diffuse. The Monte Carlo
simulations in three dimensions are similar. Finally, the partial
reactivity of the EW can be introduced by partial reflections %079,

SM2 Asymptotic behaviour of the series in
(19) and (24)

We focus on the asymptotic behaviour of the infinite series ?Z,@
and %2\, defined in (19) and (24), for potentials U(r) which
have a bounded first derivative for any r € (0,R). Our aims here
are two-fold: first we establish the exact asymptotic expansions
for these infinite series in the narrow escape limit € — 0, and
second, we derive approximate explicit expressions for %’f) and
%’éz) which permit us to investigate their asymptotic behaviour in
the limit R|U’'(R)| — .

Our analysis is based on two complementary approaches. In
the first approach we take advantage of the following observation.
When ¢ = 0, there is no EW, and the MFET is infinite, whatever
the potential is. Since .,?l(]d) does not depend on ¢, the divergence
of the MFET as € — 0 should be ensured by the divergence of
%’éd). Suppose that we truncate the infinite series in (19) or (24)
at some arbitrary n = N*. Then, turning to the limit € — 0, we
find that both ,%9 and %22> attain some constant values, which
depend on the upper limit N* of summation. As a consequence,
these truncated sums should diverge as N* — o while their small-
€ behaviour is dominated by the terms with n — . One needs
therefore to determine the asymptotic behaviour of g,(R) /g, (R) in
this limit and to evaluate the corresponding small-e asymptotics
for %’f) and %532). This will be done in the subsection SM2.1.

Next, in subsection SM2.2 we will pursue a different approach
based on the assumption that, once we are interested in the be-
haviour of the ratio g,/g,, at r = R only, we may approximate
the coefficients in the differential equations (7) and (20), which
are functions of r, by taking their values at the confining bound-
ary. This will permit us to derive an explicit expression for
gn(R)/gh(R) valid for arbitrary n, not necessarily large, and ar-
bitrary |U’(R)| < . This expression will be checked subsequently
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against an exact solution obtained for a triangular-well potential

(see SM4 and SM5). We set out to show that an approximate
expression for g,(R)/g,(R) and an exact result for such a choice

of the potential agree very well already for quite modest values
of n and the agreement becomes progressively better with an in-
crease of |[U’(R)|. On this basis, we also determine the small-¢, as
well large-RU’(R) asymptotic behaviour of %S) and %532), which
agrees remarkably well with the expressions obtained within the
first approach, and the exact solution derived for the particular
case of a triangular-well potential.

SM2.1 Large-n asymptotics of g,(R)/g,(R) and the corre-
sponding small-¢ behaviour of the infinite series %é”
and %,9) .

We introduce an auxiliary function y = y,,(r) = gu(r) /g, (r), which

is the inverse of the logarithmic derivative of g,(r) and obeys, in

virtue of (7) and (20), the following equations:

r2(1—1[/)+r(2—rU/(r))u/—n(n+1)l[/2:0 (S14)
for the 3D case, and
P (1=y)+r(1=rU'(r)) y—n*y* =0 (S15)

for the 2D case, respectively. We will seek the solutions of
these non-linear Riccati-type differential equations in form of
the asymptotic expansion in the inverse powers of n in the limit
n— oo,

Supposing that U’(r) does not diverge at any point within the
domain, we find that the leading term of y in the limit n — o is
given by y ~ r/n for both 2D and 3D cases, which is completely
independent of the potential U(r). Pursuing this approach fur-
ther, we make no other assumption to get the second term in this
large-n expansion, while for the evaluation of the third term we
stipulate that |U”(r)| < . We have then for the 3D case

ro U (r) R U(r) (441U () +2rU0"(r))
y=-- +
n 2n? 8n3
+0(i4), (516)
n
and hence,
&(R) 1 RUR) RU’(R)(4+RU’(R))+2R2U”(R)+

Rg)(R) T 2n? 8n3

1
ol =
woa):

where the omitted terms decay in the leading order as 1/n*. Sim-
ilarly, for the 2D case we find

(817)

r rRPU(r
o PU
n

U (P Q+rU'(R)+2rU0"(r) n
2n? 8n3

1
ol =
+oa):

(518)
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and hence,

gn(R) _ 1

RU'(R) N RU'(R)(24+RU'(R))+2R*U"(R) N
Rg,(R) n 2n2 8n3

ol

We observe that the asymptotic expansions (S17) and (S19) for
the 3D and the 2D cases become different from each other only
starting from the third term; first two terms are exactly the same.
As it will be made clear below, we do not have to proceed further
with this expansion and, as an actual fact, just two first terms will
suffice us to determine the leading asymptotic behaviour of %é*”
and just the first one will be enough to determine the analogous
behaviour of %532). In what follows, in SM4 and SM5 we will
also check these expansions against the exact results obtained for
the triangular-well potential, in which case the radial functions
gn and hence, the ratio g,(R)/g,,(R) can be calculated exactly. We
proceed to show that the asymptotic forms in (S17) and (S19)
coincide with the exact asymptotic expansions at least for the first
three terms.
Focusing first on the 3D case, we formally write

2n(R) _ RU'(R) +(811(R) 1

1 1 RU'(R)
Rgl(R) n 2n? Rgh(R) n 2n?

(819)

) , (520)

where the terms in brackets, in virtue of (S16) and (S17), decay
as 1 /n3 when n — . Inserting (S20) into (19), we have

3) _ 1 RU'(R)\ ¢i(e)
He R)Er + Z (Rg” (R) W o (2n+1)°
(s21)
where
ARG
L= = n(2n+1) (522)
1 ¢ ¢a(e)
x — —_— S23
an’l n2(2n+1)’ (523)
and ¢y,(¢€) is defined by (15).
Next, we find that in the limit € — 0,
_32 7
Y= it +1In(1/¢) 2 +1In2+0(¢), (S24)
Y, =In(1/¢) +1+ln2+ 2+0(e) (S25)

4 1

(526)

& (8 1 RUR) ¢q(e)
; (Rg” ® 0l o ) 1~ W
Combining (S21) and (S24, S25, S26) renders our central result
in (31) for the 3D case. The derivation of the asymptotic forms in
(S24, S25) is straightforward but rather lengthy and we relegate
it to the end of this subsection. Here we only briefly comment on
the term in (S26). We have

lim ¢ (e) = (2n+1)?, (527)

e—0
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so that the sum in (526) converges as € — 0 to

o (&(R) 1 RU'(R)
Z(Rg;(k)_fr o )(2n+1).

n=1

(528)

In view of the discussion above and (S17), the terms in brackets
decay as 1/n3, which implies that this series converges. In turn, it
means that the expression in (S26) contributes in the limit € — 0
only to a constant, e-independent term in the small-e expansion
of %S).

For the 2D case we use only the first term in the expansion in
(516) to formally represent the ratio g,(R)/g,(R) as

gn(R) gn(R) 1) ; (529)

=1, (
Rgy(R) —n \Rgy(R) n

where the terms in the brackets vanish as 1/n%. Then, inserting
the latter identity into (24), we have the following expression for

@),
=L () 2L () )

Ke

(S30)
The first sum evidently diverges as € — 0, since
. sin(ne) 1
lim( ——)=1 and Z Z= (S31)
£—0 née =1 n

As a matter of fact, this sum can be calculated in an explicit form
(see (47) in the main text) for an arbitrary €. In the small-¢ limit
it is given by

(S32)

(=] 2
Z % (““ 8)) =2In(1/€)+3 —2In2+ O(e).
On the other hand, for the sum in the last line in (S30) we have

m (M) (1) - E (i) o

n=1

Since the terms in brackets decay as 1/ n? according to (S19), we
infer that the sum in (S33) converges, so that the second term in
(S30) contributes only to the constant, e-independent term in the
small-€ expansion of %2.2). Collecting (S30) to (S33) we arrive at
the asymptotic expansion in (32).

Lastly, we outline the derivation of the asymptotic forms in
(S24, S25). For this purpose, we represent the difference of two
Legendre polynomials of orders n—1 and n+1 as

(2n+1)
n(n+1)

(l—xz)%Pn(x).

Py (x) = Py (x) = (S34)
Using next the standard integral representation of the Legendre

polynomials,

1 i
=— [dz V{
T O/ Zl 8(Z1)7

Ve(a1) =x+iV1—x2cos(z),

(835)
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we have

n V —x2 T
((Zn :11)) IE /dZ1 te(z1) ve~ (z1)
0

Pn—l(x) _Pn+1(x) =

Ue(z1) = M—ixcos(zl). (S36)

Plugging the latter representation into (S22), performing the
summation over n, and setting x = cos €, we cast ¥ into the form
of the following double integral:

Vs T
5 = / a2 [ dn @l (@.22), (837)
0 0
with
1) L (T4x pe(z1) He(z2)
Pe @) = 0 (1—x> V2 )vi(z)

o (1= veler)vetea)) (1 = el velea)) + Lis(velen)ve(e) ).
(S38)
where Liy(y) is the dilogarithm: Liy(y) = ):: y'/n?.
n=1

We focus next on the small-¢ behaviour of @gl) (z1,22). After
straightforward but lengthy calculations, we find that in this limit
<I>§1) (z1,22) admits the following expansion

OV (z21,22) =B e 2+ BV e In(e) + BV ¢!

+B" In(e)+ B +0(e), (S39)
where B;l) are functions of both z; and z5:

8i

1 2 1
B(1 ) = —gcoszl coszy, B(2 ) = ) coszj coszp (coszy +coszp) ,

2
B(31) = ﬁ (2cosz1 c0S 7 [71:2 —3—-3ir+6In(cosz; +COSZ2)]

2
— n2> (coszy +coszp), Bgl) =-a ( (4— (coszy —coszz)z)

X €0sZ] coszy + 4 (cosz) +C0$Zz)2 (I —2cosz; coszZ)> ,

(540)
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and

1
Bgl) =3 (6 —29¢08z] cOszy +24c0s> 71 cos’ 2

+6(3cosz)coszy —2) (005211 + cos? 12) )

1
+ = 4 (coszy +coszz)2 (1 —2coszjcosz)

—C0SZ] COSZp (4+coszzl +c0s2zZ +6¢c0sz] coszZ>]

+

a0~

[coszl cOS72 (4 —(cosz; — coszZ)z)

+4(cosz| +cosza)? (1 —2cosz) coszg)]

2 2
— 2 coszicosz 4 —(cosz) —coszy)

+4(coszy +c0512)2 (1 —2coszjcosz) }ln (coszy +coszp) .

(841)
Integrating BSI) over z; and z,, we get

/1 T T T
/ / dmdzzBil)z/ /dzldzzB(zl)=07
Jo Jo Jo Jo

T T /4 T

(n_ 32 / / (n _
dzidz By = —, dzidzp B, = —1,

/0 /O 1422 B3 In o Jo 1432 Dy

V1 V1
I dzdeyBY =12 (842)
o Jo 4

Collecting the expressions in (S42) we get the expansion in (S24).
Note that the coefficient 32/(3x) in front of the leading term in
(S24) was obtained earlier in57.

Similarly, using (S36), we represent the infinite series X, in
(S23) as

V3 [
3, = /0 /0 d21dz P (21, 2), (543)
where
) b (14 Me(z)Me(z2)
Pelen) =5 (l—x) V() v2(e2)

X ((V{;‘(Z])V& (z2) — 1)Lia (Ve (z1) Ve (22)) + Vg(Z])V{;‘(Z2)> , (S44)

with Ve(z12) defined in (S35).
o (z21,2,) follows

The small-¢ behaviour of
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O (21,2) =B e 2+ BP e +BY In(e) + B + 0(e), (545)

where Bgz)’ B(32), Bf‘z) and Bgz) are given explicitly by

@__2 @_ i
B ——E—COSZ1COSZZ,B3 =32

5 (6+ (m%> —6)cosz; coszZ)

2

2 2
X (coszy +coszp), By = — 2 oSz coszy (coszy +coszy)”,

and

1
BgZ) =3 ( <c052 z1 +cos? Z2) (I —2coszjcoszy)

+3coszycoszy (1 —cosz coszz)>

1
+-—-16—6(cos?z +cos’z, (1 —2coszjcoszy)
372

—11coszjcoszy + 18c052z1 coszzZ]

i
+ p cosz] coszp (cosz) +C0$Zz)2

2
— — €08Z] €082zp (€OSZ] +coszZ)2ln (coszy +coszp) .

" (S46)
Integrating B;z) over z; and z,, we obtain
‘T I ‘T [T
/ / dzldzzB?) =/ / ledeB(32) =0,
o Jo o Jo
3 T
/ / dz1deBf‘2) =1,
o Jo
/ﬂ/ﬂd d28? =L o T (347)
o Jo 21422 b5 " = 4 n 12"

Collecting these results, we obtain the asymptotic expansion in
(825).

SM2.2 Approximation for g,(R)/g,(R) and its limiting behav-
ior for sufficiently large |U’(R)|.
We pursue next a different approach for calculation of the log-
arithmic derivative of the radial functions at the boundary, and
of the corresponding expressions for the infinite series %’9 and
%éz). This approach is based on the assumption that, once we
are only interested in the behaviour on the boundary only, we
may replace the coefficients in the differential equations (7) and
(20) by their values at the boundary. Such an approximation is
legitimate, of course, only for the potentials for which U’(R) ex-
ists. In doing so, we will be able to derive an explicit, albeit an

approximate expression for g,(R)/g.,(R) which is valid, in princi-
ple, for arbitrary n and arbitrary* |U’(R)| < e. This approximate

expression will be subsequently checked against exact results ob-

This journal is © The Royal Society of Chemistry [year]

tained for the triangular-well potential (see SM4 and SM5) and
the asymptotic forms in (S17) and (S19).

We turn to the differential equations (7) and (20) and replace
the coefficients in these equations (which are functions of r) by
their values at the boundary. This gives the following differential
equations with constant coefficients:

" 2 r nn+1)
&nt (R U (R)) &n R 4= 0 (548)
and
r (L)) e e =0 (S49)
8n + E - ( ) 8&n — ﬁgn =

for the 3D and the 2D cases, respectively. Using the notation
®=RU'(R), (S50)

we write down a general solution of (S48):
_ r _9)_ 2 _2)2_
gn =101 CXP<2R (((o 2) \/(2n+1) +(w—2) 1))

+erexp (i ((w—2)+ \/(2n+ 12+ (02— 1)) . (S51)

where ¢ and ¢, are adjustable constants. We note that since
(2n+1)* =1 > 0 for any n > 0, the expression under the square
root is always positive. Further, differentiating (S51) and setting
r= R, we get the following approximate expression for the inverse
of the logarithmic derivative at the boundary:

8&n (R)
Rg}(R)

zZ(a)—2+\/(2n+l)2+(w—2)2—l

(S52)

L 20/(Cn+1)2+ (0221 !
citeexp(v/nt+ 1)+ (0-272-1) )

We notice that the last term in brackets in (S52), which is the
ratio of an algebraic and an exponential function, can be safely
neglected because the exponential function becomes large when
either (or both) n and/or |®| are large. This yields the follow-
ing approximation for the inverse logarithmic derivative, which is
independent of the constants ¢; and ¢;:

gn(R) ~ 2
Ren®) 24 \Jant 12+ (@-2)2—1

\/(2n+1)2+(w—2)2—1—w+2
- 2n(n+1) ’ (853)

The same arguments yield an analogous approximation for the
2D case:
a(R) At +(@—1)-o+1

Rg!(R) - 2n?
In Figs. S3 and S5 in the following sections SM4 and SM5 we

(S54)

«Note that the condition that U’(R) is bounded does not prevent us to study the
behaviour of g,(R)/g,(R) in the limit [U’(R)| — oo.
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compare the expressions in (S53) and (S54) with the exact re-
sults for the ratio g,(R)/(Rg),(R)) derived for the special case of a
triangular-well potential in (50). We observe a fairly good agree-
ment between the approximate forms in (S53) and (S54) and the
exact results in (S107) and (S131) even for very modest values
of n (say, for n > 10). For smaller n there are some apparent devi-
ations which however become smaller the larger |w| is.

We turn to the limit n — . We find that in this limit the ex-
pressions in ($53) and (S54) exhibit the following asymptotic be-
haviour

R 1 o-1 o*>-1 1
- — — S55
Rg,(R) ~n  2n? + 8n3 +0 n* (855)
and
a@® 1 o-1 0*-20+1 1
~ - — — S56
Rg,(R) " n  2n? + 8n3 +O n* (556)

for the 3D and the 2D cases, respectively. Comparing these expan-
sions with the asymptotic forms in (S17) and (S19), we observe
that they are identical in the leading terms for large |w|. This sug-
gests, in turn, that the approximate expressions for the inverse of
the logarithmic derivatives in (S53) and (S54) are reliable (as
well as the assumptions underlying their derivation) for |w| large
enough.

Further, using (S53) and (S54), we evaluate approximate ex-
pressions for the infinite series ,%’S) and %éz), and the correspond-
ing small-€ expansions. To this end, it is expedient to use an aux-
iliary integral identity

= dE _
\/A2+BZ:A+B/0 e A% J1 (BE) , (S57)
where J;(-) is the Bessel function. This identity is valid for A and
B such that |ImB| < ReA.

2D case

We start with the 2D case, which is simpler than the 3D one,
and set A =2n and B = @ — 1. Such a choice evidently fulfils the
condition of the applicability of the identity in (S57). We have
then

i sin®(ng)

V)
~ nte

‘@(2) ~2 Z sin? ne) B

oo

= d€ sin®(ne) _ né
+B/0 ?J](Bé)n;l e s

a2 (S58)

where the symbol = signifies that this expression is obtained via
an approximate approach. The asymptotic small-¢ behaviour of

the first sum is given by (S32), while the second and the third
terms converge to e-independent constants :

@ 2 ’
He ' ~2In(1/e)+3-2In2+0(e") — BZ
—~—

second sum

first sum

=2 1(BE)Lis(e %) . (S59)

+B/

third sum
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Since J|(z) is an odd function, J, (—z) = —J|(z), the integral in the
last line in (S59) is an even function of B, i.e., it depends only
on |B|. For large |B| (or large |®|), the major contribution to this
integral comes from small values of £, £ < 1, so that this integral
is given approximately by
o 7.[2

B/o éll(Bé)Liz(efzg) ~ |B|€ +2In|B|+0(1), (S60)
where the omitted terms O(1) are B-independent constants. We
therefore obtain

% ~21n(1/e) + %ZR(|U’(R)| ~U'(R)) +2In(R[U'(R)) +O(1).
(S61)

We conclude that in the 2D case, the leading in the limit € — 0
term in %’éz) is independent of the interaction potential and is
identical to the result in (32) based on the large-n expansions.
Remarkably, the second term in (S61) is non-zero for attractive
potentials (negative U’(R)) only, and becomes identically equal to
zero in case of repulsive potentials (positive U’(R)). As a matter
of fact, this term provides the major contribution in the limit of
infinitely strong attractive potentials. For instance, in the case of
a triangular-well potential, one has ,(KL(,Z) ~2/|o| from (55) for
negative U’(R) of very large amplitude, so that the MFET in the
limit @ — —eo becomes

2 2p2
75(2):(1’)2’70 T°R

R/ 8D ' 3D ° (562)

As discussed in the main text, the first term is the time for a
particle started uniformly to reach the boundary (in presence of
an infinitely strong attractive potential in the region ry < r <R),
whereas the second term represents the MFPT from a uniform
starting point on a circle of radius R to a point-like target (¢ = 0).

3D case

In the 3D case we set A = 2n+ 1, which is real and positive, and
B = +/(w—2)2—1. Note that the maximum imaginary value of B
is 1, and it is less than the minimal value of A = 3, attained for
n =1, so that the identity in (S57) is valid for any n» and . Using
this identity, we can cast 9223) into the following form

oo 2 o 2
3) 9n () 1 n (€)
He n:1””+1 2n+1)+2 ;n(n—l—l) +Fe(B),
(563)
where
dé —5 (Pr%( €) —2né
Fe(B) = 2/ g (Bé),;l A )engn¢ o 569

For the infinite series entering the first term on the right-hand-
side of (S63) we have

Ly 9 (€) 3
5; (n+1)(2n+1) Z

)k Z n2+k 2 +1 (865)
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where ¥, and its asymptotic behaviour are defined in (S23) and
(S25). Noticing that the second term on the right-hand side of
(S65) converges to an e-independent constant as € — 0, i.e.,

lim Z

8*)0

=

& = (2n+1) i3
z"nz“'an—i—l =Z(—1)k2 n2tk :_1_?’

we infer that

- ¢n ) —
; DT = /e ro). (e

The sum in the second term on the right-hand side of (S63) can
be formally rewritten as

L& ¢i(e) & 9ile) 1

5,; n(n+ 1) ‘n; n(2nt 1) (1_ 2(n—|—1))
R 92 (e)
_Zl_igln(nﬂ)(znﬂ)’ (568)

where ¥, and its asymptotic behaviour are defined in (S22) and
(S24). Consequently, we have

2

) 2
Lo o s
n=1

| =

Lastly, we consider the contribution in (S64). For large |B|, the
major contribution to the integral comes from & close to 0. Since
du(e) — (2n+1) as € — 0, the sum would logarithmically diverge
if both € and & were set to 0. This simple observation suggests
that this sum may exhibit a logarithmic dependence either on &,
or on &. In order to evaluate the contribution F¢ (B), we adopt the
summation technique used in the previous subsection. Recalling
the integral representations in (S35, S36), we have

B [~d§
Fe(B) =5 [ 01 (BE) Gel@), (s70)
where, explicitly,
- —2n§ T T
- r;nn—l—l 2n+1) / /dzg‘b (@1:22,¢)
= 0 0
(S71)
and
,é 1
3) e +cosé
@ (z21,22,8) = r (l—cos€> He (21) e (22)
o +1 n—-1 _op
); :+1 ve(z)ve()]" e ¥, (872)
with pe(z) and vg(z) defined in (S35, S36). Denoting § =
Ve(z1)Ve(za)e 25, we get
1 [ 14cose _
o 01228 = 1 (oot ) el ez
L@ =L@ +(1=Om1-0+L (oo

CZ
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Now, we have two options, either to expand this function first in
powers of € and then in powers of &, or to expand it first in powers
of £ and then in powers of €. These two options correspond to
two possible orders of limits: € — 0 and |B| — .

(i) Limit € — 0 for a fixed |B|.
For a fixed £ > 0, we expand d>‘(93) (z1,22,&) in powers of € to get

O (21,22,6) = C_a(z1,20,E)€ 2+ C_y (21,22, E)e ™

+C()(21722,§)+0(8). (S74)

Note that this expansion does not contain a term with logarith-
mical diverge as € — 0. Next, each coefficient Cj(z1,22,&) has to
be expanded in powers of £. After integration over z; and zp,
the contributions from C_, and C_; vanish (as expected), and the
leading terms are given by

Fy(B) = g/: %Jl (BE) [—21115 —2In2—1+3E40(&E?)

= |B|In|B|+[B|(y—3/2) +0(1)

= |o|In|o|+|o[(y—3/2) + O(In|o)), (875)

where y ~ 0.5772 is the Euler-Mascheroni constant. Combining
this contribution w1th (S67, S69), we obtain the small-¢ asymp-
totic behaviour of 9? ) for sufficiently large |o|:

= e - @-2)m(1/e)+

+|o| In|o|+ (y—3/2)|o|+ O(In|w|). (S76)

We note that despite the fact that this small-e asymptotics is for-
mally valid for sufficiently large ||, it predicts a spurious log-
arithmic divergence of the MFET in the limit |@| — . This
divergence is clearly unphysical (a stronger attractive potential
should reduce the MFET, instead of increasing it) and indicates
that (S76) holds for large but bounded w. Upon a more detailed
analysis, we infer that (S76) is only applicable for | < || < 1/e¢.

(ii) Limit |B| —  for a fixed small ¢.

Expanding d>,(33) (z1,72,&) in (S73) in powers of £, we have

o (21,2,8) = ®I(21,20) + B (21,22) + O(EY),  (S77)

which yields, upon inserting the latter expansion into (S70),

F:(B / / Zz{|B|‘P Yzz)+ 08 (@,2) | (578)
o0

S} \

Concentrating next on the narrow escape limit € — 0, we expand

d>f;3)’0(z1,zz) and q>f63)’l(zl,z2) in powers of ¢ to get

o (@1.22) = B @) e 4 B M (@) e ine)

+ B (21,2) e 4+ B (21,22) In(e) + B (21,20) + O(e),
(S79)
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where Bg3)’j (z1,22) with j=0,1 are given explicitly by

@0 2(66(3) - 7 +6)

(3)0 _
0= o By =0,

B C08Z]COSZ7 ,

2
Bg3)’0 = 3—7:2 (coszj +cosz7) (3 (4C(3) —r? +4) €082 €082

—(6@(3)—7:24-6)),

4
Bf)’o = = 3 00821 COS (coszy +coszZ)2,
4
B(53)’0 = —5 0871 082 (CO8Z) +coszZ)2ln(coszl +c0s22)
n
+5.7 <36+36C( ) — 6m% + (144 — 337 + 187i + 108 (3))

X coszj 082 (cos? z1 +cos’ 2,)
+ (1872 — 72— 728 (3)) (cos? z; +cos® z2)

+ (4777 — 174 — 174 (3)) coszy cos 2

+ (216 — 487% + 367i) cos® z; cos? Zz) , (S80)
and
2(2¢(3) —n? +2
p 2O
T
16i
B(23) - —n_—zl coszj coszp (Coszy €082y
16i
Bg3)‘l = —n_—zl €0SZ] COSZp (coszl +coszz)
2i
x In(coszy +coszy) + i (coszy +cosz)
x (coszl cosz2(12¢(3) +24 — 7n% + 12im)
—3(2¢(3) —77:2+2)) :
B! = 8 (cos?zj +cos’zp) (25
= 21 +cos”z) ( 0SZ] COS2))
+2cosz1coszp (3 —4cosz coszZ)) ) (s81)

To find an explicit expression for F¢(B) in (S78), we now have to
integrate all the coefficients B( )7 over z; and z,. This can be done
rather straightforwardly and we find that the double integrals

T
//dqdzzB (Z1,Zz) (882)
00

l\.)\'—‘

8| Journal Name, [year], [vol.],1-13

are given explicitly by

1
) =b3=03=0, b}=-1, bgzan—Z, (S83)

for j =0, and

32
pl=bl=bi=0, bl=-Z

T (584)

for j =1, respectively. Collecting these explicit expressions for the
coefficients b}, we get

32
3n

Fe(B) = e o).

|B|In(1/€)+ (In2—1/4) |B| — (S85)
Note that the coefficient in front of the term which diverges as 1/¢
is negative and is equal by the absolute value to the coefficient of
the leading diverging term in (S67), so that these two terms can-
cel each other. Recalling next the definition of B for the 3D case,
and combining (S78) with (S67, S69), we obtain the asymptotic
behaviour of .%S) for very large || and small fixed €:

2% ~ (|o| - o) In(1/e) +

Comparing the latter expression with (S76), we note that (S86)
does not contain the term |w|In|o| (that caused an unphysical
divergence of the MFET in the limit @ — —), and includes an
extra term (|| — @)In(1/¢€) so that the logarithmically diverging
term in (S86) is twice larger than the one in (S76) in case of
negative . We note that due to this additional numerical factor,
the expression in (S86) reproduces correctly, in the limit @ — —co,
the exact result obtained in®* for the MFPT to the EW solely due
to diffusion along the surface of the 3D spherical micro-domain.
We also emphasise that the coefficient in front of In(1/¢) is non-
zero only for negative @ (attractive interactions), and vanishes
for positive @ (repulsive interactions).

(In2—1/4)|@|+0(1).  (S86)

SM3 Systems without long-range interac-
tions

We examine next the simplest case without long-range interac-
tions, U(r) =0, so that a particle diffuses freely with a bounded
micro-domain.

SM3.1 3D case
The general solution of equation (7) for the radial functions g,(r)
reads

an(r)=ci +cr L (S87)

We set ¢; = 1 for convenience, and choose ¢; = 0 to ensure the
regularity at the origin. Then, the particular solution 7y(r) is

R2 _ }"2
fo(r) = D (588)
so that #j(R) = —R/(3D). We therefore obtain
R*—r? R* & ul€) (17
r0) = = +a0—3—Dn§T (E) Pu(cos®),  (S89)
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U(r)

Fig. S2 A sketch of the triangular-well interaction potential in (50).

where the coefficient gy is fixed by the self-consistent condition in
(18). This gives

2R Rz

3k(1 —cos€) * 3D (590)

apg =

with %fgﬂ defined in (42). By integrating (S89) over the volume
of the sphere, we find that the global MFET 7 from a random
location is given by (40).

We note finally that for a perfect EW (no barrier, k = =), such
that any arrival of the particle to the EW location will result in the
escape from the sphere, the condition (17) reduces to

&
/dG 5in0 1(R,0) = 0. (S91)
0

In other words, the original Dirichlet boundary condition at each
point of the EW, ¢(R,0) = 0 for 0 < 6 < ¢, is replaced by a weaker
condition requiring that the MFET vanishes on the EW on av-
erage. Hence, the condition (S91) implies that some values of
t(R,0) can become negative. As a consequence, the approxima-
tion is not expected to yield accurate results for the MFET with the
starting point (r,0) close to the EW. One can check numerically
(not shown) that the approximation is nonetheless very accurate
when the starting point is far from the EW. In general, the SCA
is expected to be more accurate for small targets, as well as for
weak reactivities x.

SM3.2 2D case
In 2D case, the radial functions g, (r) are given by g,(r) = c;7”" +
cr " =", where we set c; = 1 and ¢, = 0. We also have

R2_ 2
no(r)= D (892)
from which 7(R) = —R/(2D) follows. We therefore obtain
R? —r? R*> & sin(ne) "
1(r,0) = D T 5 n; e (r/R)"cos(n@),  (S93)

This journal is © The Royal Society of Chemistry [year]

with
R R2%%
+

— o (94)

ap

and %éz) defined in (43). Integrating (S93) over the area of the
circular micro-domain, we arrive at our result in (41).

Lastly, we note that the problem of finding the MFET through
the fully reactive arc (—¢,¢) of a disk, without LRI potential
(U(r) =0) and without a barrier at the EW (x = «) was solved
analytically by Singer et al. 7> (see also7%77).

SM4 Triangular-well potential in 3D case

We now make a particular choice of the interaction potential be-
tween the diffusive particle and the boundary — a triangular-well
radial potential defined in (50) (see Fig. S2). An advantage of
such a choice is that i) it is simple but physically meaningful (see
the discussion in®1), ii) it permits to obtain an exact solution of

the modified boundary-value problem and hence to check the ac-
curacy of our predictions in (33) and (35), iii) it allows to verify

our arguments behind the derivation of the asymptotic series in
(S17) and (S19), and finally, iv) it helps to highlight some spec-
tacular effects of the long-range particle-boundary interactions on
the MFET.

SM4.1 Solution of the inhomogeneous problem (9).
First, we compute fy(r) by direct integration of the expression in
(9) to get

o~ (3)
+H 0<r<ry,
0=1 Dy (@), 0<r<rn (895)
H (?) ro<r<R,
where
O = [ (a3 a2+ 2)e ™ [ ans
(N)—W ((l)O/ + oy +200 + )e J X;
— (1 —xy) — 21 =x) +21nx()} ; (896)

with the dimensionless parameters

10 RU Uy roUy
- = = = = X0 ®
R’ Rerg 1-xg ™ 0

X0 =
Next, the derivative of 7y(r) reads

1(R) (w2+2w+2—(w3/3+w§+2w0+2)e“’*“’“). (897)

" D’
Integrating (S95), one finds the result in (57).

SM4.2 Radial functions g,(r)
In order to solve (7), one finds solutions on each of the subinter-
vals

AP +B 1 0<r<ry,

gn(r):{A“Lun(aI);) +B+vn(%), <r<R (S98)
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where AT and B* are unknown coefficients to be determined, and

un(z) =7"M(n,2n+2,z),
(599)
va(2) =27 'U(—n—1,-2n,7)

are two independent solutions in the presence of a triangular-
well potential (50), M(a,b,z) and U(a,b,z) being Kummer’s and
Tricomi’s confluent hypergeometric functions, respectively. The
regularity of g,(r) at r = 0 requires B~ = 0. Requiring the conti-
nuity of g,(r) and of its derivative g/,(r) at r = rg, one relates A"
and BT toA™:

A" 1 =A" 1y (@) + B va(ap),

(S100)
nA"Rr} ' = AT wil, () + BT oV,(a).
These relations can be inverted to get
n,l n—1
(ravi(aw) —nR g va(an) /o)
AT =A" 7 7 )
i (00) vy, () — v (@0) 17, (€p)
(S101)

- (_rﬁ (@) +nRrj~! un(wo)/w)

BT =
un (00) vy, (@0) — v (@) uy, (@)

The denominator in the latter expressions is the Wronskian of the

solution, which can be calculated explicitly:

@1 &
(n—1)! 22~

/

v (2, (2) = (5102)

un(2)v (2) —

Note that the Wronskian can be “absorbed” into a prefactor, which
will then be factored out. We write then

) =" (%) = (G wnton)] . 109
where ,
= -l
We therefore obtain
8ulR) _ (@) = va(0) walon) 5105)

Rgh(R) o up () — @ vy (@) wa(o)
Next, using the relations
al(z) =n"M(n+1,2n+2,z7),

n(n+1)
wu(e) = — o+l

U(_na _2n7z)7
one can represent
2 (z) — nuy (z) = n" [M(n+1,2n+2,2) — M(n,2n+2,7)]

nZn-H

- M(n+1,2n+3
oMt 1,2n43,2),

() —nva(z) = —nz " H(n+ DU (=n,—2n,2) + U(—n—1,-2n,z)]

= —n?""U(n+1,2n43,2),

10| Journal Name, [year], [vol.], 1-13

so that . Mint1.2043.2)
n+1,2n+3,z
S i =2, S106
Wil0) = =305 U Lant3.) (5106)
Taking together (S105) to (S106), we obtain
gn(R) 1 M»n2n+2 o) U(n,2n+2,o)
Re/ =- - wa(@y)
g (R) n M(n+1,2n+2, o) M(n,2n+2, )

“ <1+ n+1)U(n+1,2n+2,0)

-1
M(n+1,2n+2, ) Wn((vo)) . (8107)

which is the desired exact expression for the ratio g,(R)/(Rg,(R))
for the triangular-well potential.

For numerical computations, another representation in terms
of the modified Bessel functions 7, /,(z) and K, /,(z) can be
convenient. Starting from the identities

n+1/2
Mlr+1,202.0 =372 () P a(o2),

e
Ulnt 120429 = s K1 2 (5/2)

(S108)
one can use the recurrence relations between Kummer’s and Tri-
comi’s functions to represent all the entries in (§107) in terms of
In11/2(2) and K, ;1 »(2). This gives

gn(R) _ 1 iy (o) . —1
wa® = (1 20y (it on0)
. kn(w) — 2251
><<1 ]n(w,wro/R)iin(w)_i_z% , (5109)
with
Loy3/2(2/2) Ky3/2(2/2)
w@)= PR () = A
"= 2G2) = 1)@
K, 2) 1 2
in(ez0) = n1/2(2/2) Ihy32(20/2) (S110)

Kn+3/2(z()/2) In+l/2(Z/2) .

Before we proceed with the analysis of the asymptotic large-n
behaviour of g, (R)/(Rg),(R)), it might be expedient to note that in
the particular case ry = 0, the expression in (S107) simplifies to
give

@R w(®) 1 Mn20t2,0)
Rg'(R)  wu,(w) n Mn+1.2n+2,0)’

(S111)

which is just the first factor in (S107) since w,(0) appears to be
equal identically to zero. In this particular case, we have

[0]
HO () = ﬁ [Z/dxe_xi);_l —o(1 —xo)] , (S112)

so that the MFPT from a random location to any point on the
boundary becomes

30 +8w+12 ,
—_— 7.

R2
1) (10 = o0) = 3

_w{z(ew(w—nﬂ)_

(S113)
Consequently, the MFPT to the EW from some fixed location has

This journal is © The Royal Society of Chemistry [year]
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Fig. S3 The ratio g,(R)/(Rg,,(R)) vs the order n of the radial function for
several values of Uy with ry = 0.8 and R = 1. Comparison of the exact re-
sult in (S107) (symbols) and the approximate expression in (S53) (lines).
Thin solid line is the 1/n asymptotics (solution of the problem with Uy = 0).
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Fig. S4 Infinite series %’S), multiplied by €, as a function of the angular
size € of the EW for Uy =1, Uy = —1 and Uy = —2 for rp =0 and R = 1.
Symbols represent the exact result obtained by numerical summation of
(19) involving the expression in (S107), while curves show the asymptotic
relation (31) without the last infinite sum.

the form:

o M (n,2n+2, %) (r/R)"
= Rt)(R
1(r,0) = to(r) +ag + Riy( )21 M1 205 2.0)

n=

X @ (€)Py(cos(0)), (S114)
where ay is given by (18) and, explicitly,
/ _ 2 _n,0
0(R) = 5 (07 +20+2-2¢). (5115)

Consider next the behaviour of the inverse logarithmic deriva-
tive of the radial functions at the confining boundary in the limit
n — oo for arbitrary rg. First, we find that the first factor in (S107)
obeys

1 M@n2n+2,0) 1 o 40+ 1
- T C . T 40— ). (s116
n Mn+1,2n+2,0) n 2n? RO <n4> ( )

Second, we analyse the large-n behaviour of the second factor in
(S107). Taking into account the definition of w,(z) in (S106), we

This journal is © The Royal Society of Chemistry [year]

observe that the correction term to unity has the form of a product
of ratios of two Kummer’s and Tricomi’s functions with different
arguments. The asymptotic large-n behaviour of the ratio of two
Kummer’s functions follows

M(n+1,2n+3, )

7= exp (—g (1 —xo))

(n+1)M(n,2n+2,0
1 o} 40y —(4— o) 1

N R ekl el Gl Y LAY (s117)
n 16n2 n3

i.e., is an expansion in the inverse powers of n. The ratio of two
Tricomi’s functions is given by
Zn+l (ﬂ+l) (n+§')/(1)s
1+l
2" ("C(n4s+1)/0f

U(n,2n+2,0) "

= X S118
U(n+1,2n+3, ay) 1 @0xo ( )

Noticing that in the latter expression the major contribution to
the sums in the numerator and the denominator stems from the
terms with s = n+ 1, we infer that the leading behaviour of the
ratio in (S118) in the limit n — oo obeys

U(n,2n+2,m) Won  opiy
Un+1.2n+3,a9) (2n+1)"0

(8119)

which means that the ratio of two Tricomi’s functions vanishes
exponentially fast with n as n — « for xy < 1 (i.e., rp < R). This
implies, in turn, that the correction term to unity in the second
factor in (S107) is exponentially small as n — o and hence, can
be safely neglected.

Next, we consider the behaviour of the third factor in (S107)
which is also a product of ratios of two Kummer’s and Tricomi’s
functions. We have

M(n+1,2n+3, ay)
M(n+1,2n+2,m)

e (<20

201 _ 42
1_4wo+w<1xo>+0<1)] (5120)
16n n?
and
Un+1,2n+2,0) = ] Lo (T(n+1+5)/0* (s121)

Un+1.2n+3,0) 0y ("Nt 1+45) /0

N

Noticing that in the n — o limit the major contribution to the sums
in the numerator and the denominator in the latter expression
is provided by the terms with s = n, we find eventually that the
leading behaviour of the ratio of two Tricomi’s functions is defined
by

Un+1.2n4+2,0)  ap 2t
U(n+1,2n+3,a)()) (2n+1)"°

(8122)

Therefore, due to the factor x2""!, which vanishes exponentially

fast as n — oo, the third factor in (S107) appears to be exponen-
tially close to 1 and can be safely neglected.

As a consequence, the leading asymptotic behaviour of
gn(R)/(Rg,(R)) in (S107) is entirely dominated by the first fac-
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tor and hence, we have

R 1 o 40+® 1
- 24070 o(= ).
Rg,(R) n 2n2 * 8n3 + nt

(5123)

The expansion in (S123) permits us to verify our general argu-
ment on the asymptotic behaviour of the ratio g,(R)/(Rg),(R)) in
the limit n — oo, presented in the beginning of SM2 (see (S17)).
Recalling that @ = RU’(R) = Uy /(1 —xp) and that for such a poten-
tial U”(R) = 0, we observe a perfect coincidence of (S17), based
on an intuitive (albeit quite plausible) argument, and the large-n
expansion of the inverse of the logarithmic derivative, evaluated
for an exactly solvable case of a triangular-well potential U(r).
Further, we note that the large-n behaviour of (5123) is domi-
nated by the first factor, which is the solution for a particular case
ro = 0. This implies, in turn, that in the large-n limit the depen-
dence on ry is fully embodied in the dimensionless parameter @.

Lastly, we compare the approximate expression (S53) for
gn(R)/(Rg,(R)) and the exact result in (S107) obtained for the
triangular-well potential, see Fig. S3. We observe a fairly good
agreement between the approximate formula (S53) and the ex-
act result already for quite modest values of n, and notice that
the agreement becomes even better for larger values of R|U’(R)|.
Accordingly, our approximate small-¢ expansion in (31) (with-
out the infinite sum in the last line) and the exact result for &Z@
agree well with each other, see Fig. S4. The smaller ¢, the better
agreement is.

SM5 Triangular-well potential in 2D case

SM5.1 Solution of the inhomogeneous problem (22)
Integrating Eq. (22), we get

B g 0<r<
() =1 4D g, “ T (5124)
@er <
H ( - ) ro<r<R,
where
@) RZ ) . @ &
H =— 2 e~ =
(2) Da? [(wo/ +my+1)e /dx -
—o(1-xo) +lnx0}, (S125)
Integrating (S124), one arrives at (63). One also gets
th(R) = % (a)+ 1- (w§/2+ax)+1)e“"“’°) . (5126)

SM5.2 Radial functions

In two dimensions, the solutions of (7) for a triangular-well po-
tential read

un(z) =7"M(n,2n+1,z),

(8127)
vo(z) =z "U(—n,—2n+1,z2).
Using the identities
au(2) = n"M(n+1,2n+1,2),
(S128)

() = —nzz_”U(—n—f— 1,—-2n+1,z2),
12| Journal Name, [year], [vol.], 1-13

one gets
nzn+1
2ty (2) — ity (2) = 2’17_’_1M(rz-|—1,2n—1—2,z), 129
ZV:L(Z) —nvp (Z) = —nz_”U(—n, —2}’1,2),
so that wy(z) becomes
wu(z) —n M(n+1,2n+2,
w(e) = 2l D) M ) (S130)

2w (2) —nva(2) 2n+1)U(n+1,2n+2,z)"

Combining these equations we obtain the following explicit ex-
pression for the inverse logarithmic derivative of the radial func-
tions in the 2D case with the triangular-well potential:

gn(R) _1 M(n72n+17a)) _ U(n,2n+1,a)) w ( )
Re.(R) n Mntl2ntl.o)\ Mu2ntlo) "M

(8131)

-1
nU(n+1,2n+1,m)
1 .
X( Mnt1,2011,0) W”(w“)>

As earlier in the 3D case, another representation can be obtained
using (S108)

gn(R) _ 1 1=in(@)+ (1 +kn(®)) ju(®, ap)
RGP 115 im(@) F (@) n(@ @)’ 12
with
()= Iny1)2(2/2) _ Ky12(2/2)
&= e MO9SR e
(220 = Ky 12(2/2) Liy1/2(20/2) (S133)

Kn+1/2(10/2) 1,1,1/2(2/2) '

As in the 3D case, we consider first the solution in the particular
case when ry = 0. One may readily observe that here w,(0) =0,
which implies that (S131) attains a simpler form

gn(R) 1 M(n2n+1 0)
Rg,(R)  n M(n+1.2n+1,0)

. (5134)

which is again just the first factor in (S131).

Turning to the limit n — oo, we find that the first factor in (S131)
obeys

1 Mn2n+lo) 1 o

I _M@2ntl,0) 010 (1
n Mn+1,2n+1,0) n 2n2 8n3

E) . (S135)

Further, considering the second and the third factors on the right-
hand side of (S131) we use a similar analysis as in the 3D case to
find that their deviation from unity is exponentially small. This
yields the following result for the behaviour of g,(R)/(Rg,(R)) in
the limit n — co:

@R 1 o 20+ 1
=-—— ol=].
Rgl(R) n 2n? TR T

(8136)

Recalling the definition of @ and noting that for the triangular-
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Fig. S5 The ratio g,(R)/(Rg,(R)) vs the order n of the radial function
for several values of Uy, with rp =0.8 and R = 1. Comparison of the
exact result in (S131) (symbols) and the approximate expression in (S54)
(lines). Thin solid line is the 1/n asymptotics (solution for Uy = 0).
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well potential U”(R) = 0, we again observe a perfect agreement
between our expansion in (S19) and the exact result in (S136).
We note as well that similarly to the 3D case, it appears that the
large-n behaviour is dominated by the solution with ry = 0, which
implies that the dependence on this parameter of the interaction
potential is fully taken into account by the parameter w.

Lastly, we compare the approximate expression (S54) for
gn(R)/(Rg,(R)) and the exact result in (S131) obtained for the
triangular-well potential. We observe in Fig. S5 a fairly good
agreement between the approximate formula (S54) and the ex-
act result already for even smaller than in the 3D case values of n.
The agreement becomes even better for larger values of R|U’(R)].
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