

Fig. S1 EDS analysis for (a) x = 0.04, (b) x = 0.00, (c) x = -0.02, (d) x = -0.04 and (e) x = -0.08 ceramics

Figure S1 presents the EDS results of KNLNS ceramics. The atomic ratio of K reduces gradually with the decrease of x: for the samples with x = 0.04, 0.00, -0.02 and -0.04, the relative concentrations of K/Nb are about 38.2%, 35.3%, 34.1% and 33.1%, respectively; and the relative concentrations of of K/Na are about 91.5%, 88.0%, 80.4% and 77.1%, respectively. Such results correspond to the expectation of the experiment.

	x = 0.04						x = 0.00					
$T(^{\circ}C)$	$R_{\rm g}\left(\Omega\right)$	$C_{\rm g}\left({\rm F} ight)$	$ au_{ m g}$	$R_{\rm gb}\left(\Omega ight)$	$C_{\rm gb}\left({\rm F} ight)$	$ au_{ m gb}$	$R_{\rm g}\left(\Omega ight)$	$C_{g}(F)$	$ au_{ m g}$	$R_{\mathrm{gb}}\left(\Omega\right)$	$C_{\rm gb}\left({\rm F} ight)$	$ au_{ m gb}$
300	1.24×10^5	2.92×10^{-9}	3.62×10^{-4}	$2.10 imes 10^6$	1.11 × 10-9	2.33×10-3	$1.68 imes 10^6$	5.61×10^{-10}	9.42×10-4	$5.79 imes 10^{6}$	5.94× 10 ⁻¹⁰	3.44×10-3
320	1.08×10^5	$5.30 imes 10^{-9}$	$5.70 imes 10^{-4}$	$2.13 imes 10^6$	1.81×10^{-9}	3.86×10-3	6.09×10^{5}	6.77×10^{-10}	4.12×10-4	$3.54 imes 10^6$	6.29× 10 ⁻¹⁰	2.23×10-3
340	$1.85 imes 10^5$	4.08×10^{-9}	7.54×10^{-4}	2.62×10^6	1.72×10^{-9}	4.51×10-3	5.12×10^5	$7.83 imes 10^{-10}$	401×10 ⁻⁴	$2.77 imes 10^6$	8.76× 10 ⁻¹⁰	2.43×10-3
360	$2.84 imes 10^5$	$2.39 imes 10^{-9}$	6.79× 10 ⁻⁴	$2.84 imes 10^6$	$1.30 imes 10^{-9}$	3.69×10-3	3.87×10^5	1.64×10^{-9}	6.35×.10 ⁻⁴	$2.33 imes 10^6$	1.64×10^{-9}	3.82×10-3
380	2.95×10^5	1.52×10^{-9}	4.48×10^{-4}	$2.19 imes 10^6$	1.07×10^{-9}	2.34×10-3	2.70×10^5	2.78×10^{-9}	7.51×10-4	1.45×10^{6}	2.52×10^{-9}	3.65×10-3
400	2.43×10^5	$9.33 imes 10^{-10}$	2.26×10^{-4}	$1.45 imes 10^6$	8.74×10^{-10}	1.27×10-3	$2.78 imes 10^5$	1.67×10^{-9}	4.64×10-4	7.85×10^5	1.99×10^{-9}	1.56×10-3
420	2.42×10^5	9.30×10^{10}	2.25×10^{-4}	$1.44 imes 10^6$	$8.70 imes 10^{-10}$	1.26×10-3	1.59×10^{5}	1.19×10^{-9}	1.89×10 ⁻⁴	4.25×10^5	1.88×10^{-9}	7.99×10 ⁻⁴
440	1.91×10^4	$5.51 imes 10^{-10}$	1.05×10^{-5}	8.00×10^5	7.52×10^{-10}	6.02×10 ⁻⁴	$8.05 imes 10^4$	9.73×10^{-10}	7.83×10 ⁻⁴	2.07×10^{5}	1.63×10^{-9}	3.37×10 ⁻⁴
460	$1.58 imes 10^4$	$4.72 imes 10^{-10}$	7.46×10-6	6.26×10^5	$6.91 imes 10^{-10}$	4.33×10 ⁻⁴	$3.78 imes 10^4$	$8.13 imes 10^{-10}$	3.07×10-5	1.07×10^5	1.36×10^{-9}	1.46×10 ⁻⁴
480	$1.09 imes 10^4$	4.37×10^{10}	4.77×10-6	4.62×10^4	6.44×10^{-10}	2.98×10-5	$2.63 imes 10^4$	$5.07 imes 10^{-10}$	1.33×10-5	7.61×10^4	1.14×10^{-9}	8.68×10 ⁻⁴
	<i>x</i> = -0.02						<i>x</i> = -0.04					
T (°C)	$R_{\rm g}(\Omega)$	$C_{g}(F)$	$ au_{ m g}$	$R_{\rm gb}\left(\Omega\right)$	$C_{\rm gb}\left({\rm F} ight)$	$ au_{ m gb}$	$R_{\rm g}(\Omega)$	$C_{g}(F)$	$ au_{ m g}$	$R_{\rm gb}\left(\Omega\right)$	$C_{\sf gb}({\sf F})$	$ au_{ m gb}$
300	2.71×10^4	2.65×10^{-10}	7.18×10-6	$6.46 imes 10^4$	1.46 × 10 ⁻⁷	9.43×10-3	$9.75 imes 10^4$	3.16×10^{-10}	3.08×10-5	$7.35 imes 10^4$	$4.80 imes 10^{-8}$	3.53×10-3
320	$1.95 imes 10^4$	$3.08 imes 10^{-10}$	6.01×10-6	$8.99 imes 10^4$	1.66×10^{-7}	1.49×10 ⁻²	2.14×10^4	$3.06 imes 10^{-10}$	6.55×10-6	$5.19 imes 10^4$	1.46×10^{-7}	7.8×10-3
340	$1.18 imes 10^4$	$6.73 imes 10^{-10}$	7.91×10-6	$1.33 imes 10^5$	1.30×10^{-7}	1.73×10 ⁻²	1.16×10^3	$3.10 imes 10^{-10}$	3.60×10-6	$4.38 imes 10^4$	2.04×10^{-7}	8.94×10-3
360	$1.07 imes 10^4$	3.22×10^{-9}	3.45×10-5	1.20×10^{5}	1.03×10^{-7}	1.24×10 ⁻²	8.01×10^{3}	$4.09 imes 10^{-10}$	3.28×10-6	4.22×10^4	2.10×10^{-7}	8.86×10-3
380	2.00×10^4	1.81×10^{-9}	3.62×10-5	$9.68 imes 10^4$	$5.32 imes 10^{-8}$	5.15×10-3	5.45×10^{3}	7.30×10^{-10}	3.98×10-6	$3.80 imes 10^4$	1.95×10^{-7}	7.41×10-3
400	3.00×10^4	$6.91 imes 10^{-10}$	2.07×10-5	$4.96 imes 10^4$	1.32×10^{-8}	6.55×10 ⁻⁴	4.77×10^{3}	1.92×10^{-9}	9.16×10-6	2.60×10^4	1.58×10^{-7}	4.11×10-3
420	1.60×10^4	$6.18 imes 10^{-10}$	9.89×10-6	$2.59 imes 10^4$	$1.97 imes 10^{-8}$	5.10×10 ⁻⁴	5.99×10^{3}	1.50×10^{-9}	8.99×10-6	$2.08 imes 10^4$	1.31×10^{-7}	2.72×10-3
440	1.04×10^4	$5.23 imes 10^{-10}$	5.44×10 ⁻⁶	$1.53 imes 10^4$	$3.04 imes 10^{-8}$	4.65×10 ⁻⁴	7.45×10^{3}	$8.91 imes 10^{-10}$	6.64×10 ⁻⁵	1.60×10^4	8.32×10^{-8}	1.33×10-3
460	6.16×10^{3}	3.99×10^{10}	2.46×10-6	8.75×10^3	$3.48 imes 10^{-8}$	3.05×10 ⁻⁴	6.36×10^{3}	6.44×10^{-10}	4.10×10-6	1.02×10^4	$5.69 imes 10^{-8}$	5.80×10-4
480	3.71 ×1 0 ³	3.16×10^{-10}	1.17×10-6	5.49×10^3	2.72×10^{-8}	1.49×10 ⁻⁴	4.67×10^{3}	5.14×10^{-10}	2.40×10-6	7.20×10^{3}	3.37×10^{-8}	2.43×10-4

Table S1 Resistance, capacitance and time constant (τ , where $\tau = RC$) of grain (R_g , C_g) and grain boundary (R_{gb} , C_{gb}) of x = 0.04, x = 0.00, x = -0.02 and x = -0.04 ceramics after fitting with an electrical circuit shown in Fig. 5a

Fig. S2 Impedance complex plane plot at different temperatures for (a) x = 0.04, (b) x = 0.00, (c) x = -0.02 and (d) x = -0.04 ceramics