Supporting Information

Highly Efficient $g-C_3N_4/SiO_2$ Heterojunction: The role of SiO_2 for the Enhanced Visible Light Photocatalytic Activity

Qiang Hao,^a Xiuxiu Niu,^a Changshun Nie,^a Simeng Hao,^a Wei Zou,^a Jiangman Ge^a

Daimei Chen,*a and Wenqing Yao*b

a (National Laboratory of Mineral Materials, School of Material Science and Technology, China University of Geosciences, Beijing 100083, China)

b (Department of Chemistry, Tsinghua University, Beijing, 100084, PR China. E-mail: yaowq@tsinghua.edu.cn)

*Corresponding author.

Tel.: +86 15801558907; fax: +86 10 82322974.

E-mail: chendaimei@cugb.edu.cn;

1. Figure S1: Fourier Transform Infrared Spectrometer (FTIR) of prepared samples.

Figure S1. FT-IR spectra of g-C₃N₄, SiO₂ and g-C₃N₄/SiO₂ samples.

Figure S1 shows the FT-IR spectra of $g-C_3N_4$, SiO₂ and $g-C_3N_4$ /SiO₂ samples. In the FT-IR spectrum of $g-C_3N_4$, the peak at 1629 cm⁻¹ is attributable to the C=N stretching vibration modes, while the peaks at 1228 cm⁻¹,1318 cm⁻¹ and 1403 cm⁻¹ are due to the aromatic C-N stretching.¹⁻³ The peak at 808 cm⁻¹ is related to the s-triazine ring modes.⁴ The peak at 1086 cm⁻¹ is a Si-O-Si antisymmetric stretching and the peak at 796 cm⁻¹ is Si-O symmetric stretching. The peak at 955 cm⁻¹ is caused by the bending vibration of Si-OH. With the increase of SiO₂, a small paek at 1086 cm⁻¹ can be

observed in the $g-C_3N_4/SiO_2$ composites, but the wavenumber has not changed which means the force between $g-C_3N_4$ and SiO_2 is a physical process, rather than chemical action.

2. Fluorescence spectrum (PL) of SiO₂

Figure S2. Fluorescence spectrum (PL) of SiO₂ under excitation by the 266 nm and 325 nm lasers

Under excitation by the 266 nm and 325 nm lasers, SiO_2 has a lot of peaks, indicating its impurity energy level. The valence band maximum is mainly composed

of the by O 2p orbital⁵ and the energy levels of the surface states for quartz are at least 2.19 eV to 3.08 eV above the valence band.

Reference:

Zhao, Y. C.; Yu, D. L.; Zhou, H. W.; Tian, Y. J.; Yanagisawa, O. Turbostratic carbon nitride prepared by pyrolysis of melamine. *J Mater Sci.* 2005, *40*, 2645-2647..
 Li, X.; Zhang, J.; Shen, L.; Ma, Y.; Lei, W.; Cui, Q.; Zou, G. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. *Appl Phys A*. 2009, *94*, 387-392.

[3] Liu, L.; Ma, D.; Zheng, H.; Li, X.; Cheng, M.; Bao, X. Synthesis and characterization of microporous carbon nitride. *Micropor Mesopor Mater.* 2008, *110*, 216-222.

[4] Liu, L.; Ma, D.; Zheng, H.; Li, X.; Cheng, M.; Bao, X. Synthesis and characterization of microporous carbon nitride. *Environ Sci Technol.* 2008, *42*, 2342-2348.

[5] Li, R.; Wang, X.; Jin, S.; Zhou, X.; Feng, Z.; Li, Z.; Shi, J.Y.; Zhang, Qiao.; Li, C.
Photo-induced H₂ production from a CH₃OH-H₂O solution at insulator surface. *Sci Rep-UK.* 2015, 5.