Electronic Supplementary Information for "Halogen transfer through halogen bonds in halogen-bound ammonia homodimers"

Juan Crugeiras, and Ana Ríos

Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, Spain; E-mail: juan.crugeiras@usc.es, anamaria.rios@usc.es

List of Figures

S1	Energy profile for bromine transfer between nitrogen atoms in the $[H_3NBrNH_3]^+$	-
	homodimer	7
S2	Energy profile for iodine transfer between nitrogen atoms in the $[H_3NINH_3]^+$	
	homodimer	8

List of Tables

Covalent[3] and van der Waals[2] radii for the elements relevant to this work.	2
X-Ray structural parameters for compounds containing an N-X-N atom	
arrangement ($X = Br$ or I). Bond distances in Å and bond angles in degrees.	3
Cartesian coordinates of the optimized geometries of ammonia, N-haloamines	
(NH_2X) and their corresponding protonated forms $(NH_3X^+, X = F, Cl, Br,$	
I) at the MP2(full)/aug-cc-pVTZ-PP level of theory.	4
Cartesian coordinates of the optimized geometries of ammonia-haloamine	
complexes ($[H_2N-X\cdots NH_3]$, X = F, Cl, Br, I) at the MP2(full)/aug-cc-	
pVTZ-PP level of theory.	5
Cartesian coordinates of the optimized geometries of halogen-bound am-	
monia homodimers ($[H_3NXNH_3]^+$, $X = F$, Cl, Br, I) at the MP2(full)/aug-	
cc-pVTZ-PP level of theory	6
	Covalent[3] and van der Waals[2] radii for the elements relevant to this work. X-Ray structural parameters for compounds containing an N-X-N atom arrangement (X = Br or I). Bond distances in Å and bond angles in degrees. Cartesian coordinates of the optimized geometries of ammonia, N-haloamines (NH ₂ X) and their corresponding protonated forms (NH ₃ X ⁺ , X = F, Cl, Br, I) at the MP2(full)/aug-cc-pVTZ-PP level of theory Cartesian coordinates of the optimized geometries of ammonia-haloamine complexes ([H ₂ N-X····NH ₃], X = F, Cl, Br, I) at the MP2(full)/aug-cc- pVTZ-PP level of theory

$r_{cov}/{\rm \AA}$	$r_{vdw}/{ m \AA}$
0.31	1.20
0.76	1.70
0.71	1.55
0.57	1.47
1.02	1.75
1.20	1.85
1.39	1.98
	$\frac{r_{cov}/\text{\AA}}{0.31}$ 0.76 0.71 0.57 1.02 1.20 1.39

Table S1: Covalent[3] and van der Waals[2] radii for the elements relevant to this work.

	d(N-X)	∠NXN	ref
$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)_2^{\mathrm{Br}^-}$	2.110	177.3	[5]
$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right)_2^{\mathrm{Br}^-}$	2.105	176.0	[6]
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2.156^a 2.120	180	[1]
$\left(\begin{array}{c} \\ \\ \end{array} \right)_{2}^{N} Br^{+}$	2.075^a 2.107	178.4	[8]
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2.143^a 2.186	176.3	[8]
$(\mathrm{H_{3}CCN})_{2}\mathrm{I^{+}}$	2.198	180.0	[4]
$\left(\begin{array}{c} \\ \\ \end{array} \right)_{2}^{N} \right)_{2}^{I^{+}}$	2.16		[7]

Table S2: X-Ray structural parameters for compounds containing an N-X-N atom arrangement (X = Br or I). Bond distances in Å and bond angles in degrees.

 $^a \rm Non-symmetric ~N-X-N$ atom arrangement

Table S3: Cartesian coordinates of the optimized geometries of ammonia, N-haloamines (NH₂X) and their corresponding protonated forms (NH₃X⁺, X = F, Cl, Br, I) at the MP2(full)/aug-cc-pVTZ-PP level of theory. NH₂ x y z

$\rm NH_3$	х	У	\mathbf{Z}				
Ν	0.00000	0.00000	0.11248				
Η	0.00000	0.93725	-0.26245				
Η	-0.81168	-0.46862	-0.26245				
Η	0.81168	-0.46862	-0.26245				
H_2NF				H_3NF^+			
Ν	-0.06454	0.68693	0.00000	Ν	0.00000	0.00000	-0.59433
\mathbf{F}	-0.06454	-0.73214	0.00000	\mathbf{F}	0.00000	0.00000	0.76346
Η	0.51632	0.89037	0.80715	Η	0.00000	0.97828	-0.90362
Η	0.51632	0.89037	-0.80715	Η	-0.84722	-0.48914	-0.90362
				Η	0.84722	-0.48914	-0.90362
H_2NCl				H_3NCl^+			
Ν	-0.04299	1.11908	0.00000	Ν	1.05212	0.00000	0.00000
Cl	-0.04299	-0.62150	0.00000	Cl	-0.67826	0.00000	0.00000
Η	0.51582	1.36596	0.80858	Η	1.38856	0.83765	-0.48079
Η	0.51582	1.36596	-0.80858	Η	1.38856	-0.83520	-0.48504
				Η	1.38855	-0.00245	0.96582
H_2NBr				H_3NBr^+			
Ν	-0.02559	1.47852	0.00000	Ν	0.45229	0.24081	1.34323
Br	-0.02559	-0.39412	0.00000	Br	-0.13837	-0.07368	-0.41095
Η	0.53741	1.72234	0.80708	Η	-0.34673	0.22403	1.97838
Η	0.53741	1.72234	-0.80708	Η	0.90617	1.15402	1.38978
				Η	1.11760	-0.48513	1.61245
H_2NI				H_3NI^+			
Ν	-0.01815	1.75109	0.00000	Ν	0.00000	0.00000	-1.74468
Ι	-0.01815	-0.30680	0.00000	Ι	0.00000	0.00000	0.34896
Η	0.54438	2.00145	0.80678	Η	0.00000	0.95773	-2.09395
Η	0.54438	2.00145	-0.80678	Η	0.82942	-0.47887	-2.09395
				Η	-0.82942	-0.47887	-2.09395

$H_2N-Cl\cdots NH_3$			
Ν	-2.10883	0.00001	0.24788
Η	-2.46988	0.80753	-0.24659
Η	-2.46989	-0.80752	-0.24658
Cl	-0.40342	-0.00001	-0.12026
Ν	2.57716	0.00000	0.00041
Η	2.50688	-0.81110	0.59782
Η	2.50682	0.81109	0.59783
Η	3.50581	0.00004	-0.39605
$H_2N-Br\cdots NH_3$			
Ν	0.17762	2.09375	0.00000
Н	-0.35835	2.39563	0.80553
Н	-0.35835	2.39563	-0.80553
Br	0.00000	0.21578	0.00000
Ν	-0.06289	-2.58920	0.00000
Η	0.43910	-2.91597	-0.81300
Η	-0.96459	-3.04362	0.00000
Н	0.43910	-2.91597	0.81300
$H_2N-I\cdots NH_3$			
Ν	2.21204	0.00001	-0.12026
Η	2.50555	0.80522	0.42234
Η	2.50556	-0.80519	0.42234
Ι	0.14008	0.00000	-0.00152
Ν	-2.68152	0.00001	0.01065
Η	-3.07310	-0.00093	0.94176
Н	-3.03785	0.81489	-0.46846
Н	-3.03778	-0.81395	-0.47007

Table S4: Cartesian coordinates of the optimized geometries of ammonia-haloamine complexes ($[H_2N-X\cdots NH_3]$, X = F, Cl, Br, I) at the MP2(full)/aug-cc-pVTZ-PP level of theory.

$[\mathrm{H}_3\mathrm{NXNH}_3]^+$	х	У	Z
$[H_3N-F\cdots NH_3]^+$			
N	-0.86556	-0.96663	-1.26417
Н	-1.62612	-0.38569	-1.62952
Н	-0.18637	-1.19544	-1.99613
Н	-1.22621	-1.81238	-0.81244
\mathbf{F}	-0.21265	-0.23748	-0.31058
Ν	1.04448	1.16644	1.52549
Н	1.43666	2.02662	1.16574
Н	1.81782	0.66688	1.94447
Н	0.44563	1.43863	2.29388
[H ₃ N-F-NH ₃] ⁺			
N	1.79887	0.00000	0.00000
Н	2.01642	0.75274	-0.63952
Н	2.01642	0.17747	0.97165
Н	2.01642	-0.93021	-0.33214
\mathbf{F}	0.00000	0.00000	0.00000
Ν	-1.79887	0.00000	0.00000
Н	-2.01642	0.93021	0.33213
Н	-2.01642	-0.75274	0.63952
Н	-2.01642	-0.17747	-0.97165
[H ₃ N-Cl-NH ₃] ⁺			
N	0.00000	0.00000	-1.99905
Η	0.83924	-0.46299	-2.33149
Η	-0.82058	-0.49531	-2.33149
Η	-0.01866	0.95829	-2.33149
Cl	0.00000	0.00000	0.00000
Ν	0.00000	0.00000	1.99905
Н	0.82057	0.49531	2.33149
Н	0.01867	-0.95829	2.33149
Н	-0.83924	0.46298	2.33149
$[H_3N-Br-NH_3]^+$			
Ν	0.00000	0.00000	2.10331
Н	0.00003	0.95382	2.44861
Н	-0.82605	-0.47689	2.44861
Н	0.82602	-0.47694	2.44861
Br	0.00000	0.00000	0.00000
Ν	0.00000	0.00000	-2.10331
Н	0.82605	-0.47689	-2.44861
Н	-0.00003	0.95382	-2.44861
Н	-0.82602	-0.47694	-2.44861

Table S5: Cartesian coordinates of the optimized geometries of halogen-bound ammonia homodimers ($[H_3NXNH_3]^+$, X = F, Cl, Br, I) at the MP2(full)/aug-cc-pVTZ-PP level of theory.

Table S5 – Continued from previous page				
$[\mathrm{H}_3\mathrm{NXNH}_3]^+$	х	У	Z	
$[H_3N-I-NH_3]^+$				
Ν	0.00000	0.00000	2.27997	
Η	-0.47416	0.82136	2.64111	
Η	-0.47424	-0.82132	2.64111	
Η	0.94840	-0.00004	2.64111	
Ι	0.00000	0.00000	0.00000	
Ν	0.00000	0.00000	-2.27997	
Η	0.47416	0.82136	-2.64111	
Η	0.47424	-0.82132	-2.64111	
Н	-0.94840	-0.00004	-2.64111	

Figure S1: Energy profile for bromine transfer between nitrogen atoms in the $\rm [H_3NBrNH_3]^+$ homodimer.

Figure S2: Energy profile for iodine transfer between nitrogen atoms in the $\rm [H_3NINH_3]^+$ homodimer.

References

- [1] Larry K. Blair, Kevin D. Parris, Pwo Sen Hii, and Carolyn P. Brock. A stable bromine(+) ion complex. a twisted bicyclo[2.2.2]octane derivative. synthesis and structure of bis(quinuclidine)bromine(i) tetrafluoroborate. J. Am. Chem. Soc., 105(11):3649–3653, 1983.
- [2] A. Bondi. van der waals volumes and radii. J. Phys. Chem., 68(3):441–451, 1964.
- [3] Beatriz Cordero, Veronica Gomez, Ana E. Platero-Prats, Marc Reves, Jorge Echeverria, Eduard Cremades, Flavia Barragan, and Santiago Alvarez. Covalent radii revisited. *Dalton Trans.*, (21):2832–2838, 2008.
- [4] Margaret-Jane Crawford, Michael Gobel, Konstantin Karaghiosoff, Thomas M. Klapotke, and Jan M. Welch. Does [i3]+ act as an "[i]+" donor to CH₃CN and n2o? structure of [h3ccn-i-ncch3]+[asf6]. *Inorg. Chem.*, 48(21):9983–9985, 2009.
- [5] M. Elding, J. Albertsson, G. Svensson, and L. Eberson. Organic 'hypervalent' bromine compounds: the structure of a linear n-bromotetramethylsuccinimidetetramethylsuccinimidate complex in the solid state. Acta Chem. Scand., 44(2):135–8, 1990.
- [6] Margareta Elding, Ann Kristin Larsson, Goeran Svensson, Joergen Albertsson, and Lennart Eberson. Structure of a 'hypervalent' linear bis(phthalimidato)bromate(i) complex. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C48(11):2078–80, 1992.
- [7] O. Hassel and H. Hope. Structure of the solid compound formed by addition of two molecules of iodine to one molecule of pyridine. Acta Chem. Scand., 15:407–16, 1961.
- [8] Alexei A. Neverov, Helen Xiaomei Feng, Kristen Hamilton, and R. S. Brown. Bis(pyridine)-based bromonium ions. molecular structures of bis(2,4,6-collidine)bromonium perchlorate and bis(pyridine)bromonium triflate and the mechanism of the reactions of 1,2-bis(2'-pyridylethynyl)benzenebrominum triflate and bis(pyridine)bromonium triflate with acceptor olefins. J. Org. Chem., 68(10):3802–3810, 2003.