Supporting Information for

Mapping the sequence-structure relationships of simple cyclic hexapeptides

Sean M. McHugh,[‡] Hongtao Yu,[‡] Diana P. Slough, Yu-Shan Lin*

Department of Chemistry, Tufts University, Medford, MA 02155, United States

To verify that 100 ns BE-META simulation was sufficient to provide converged structural descriptions of the CPs studied, two sets of simulations were performed for all 27 CPs starting from two different initial configurations, S1 and S2 (structure 1 and structure 2). These two sets of simulations were used to monitor simulation convergence. To describe the convergence behavior of each set of BE-META simulations, we monitored the overlap of probability density with the final converged reference results as a function of simulation time. The normalized integrated product (NIP)¹ of the population densities in the 2D principal subspace is calculated as:

$$\text{NIP} = \frac{2\sum_{i} \rho_{i} \rho_{i,ref}}{\sum_{i} \rho_{i}^{2} + \sum_{i} \rho_{i,ref}^{2}}$$

where ρ_i and $\rho_{i,ref}$ are the population density of grid point *i* and its reference value, respectively. The summation is over all the grid points in the 3D principal subspace. The NIP value ranges from 0 (no overlap) to 1 (perfect overlap). For each S1 simulation, the population density calculated from the last 25 ns of the S2 simulation was used as the reference, and vice versa.

J_nA_{6-n} and (B) G_nV_{6-n} cyclic hexapeptides. Populations and turn types are shown for the top 3 most populated	cesidues forming type I, I', II, II' β turns are colored red, orange, green, and blue respectively; γ turn is colored	
Table S1. (A) $G_n A_{6-n}$ and (B)	conformations. Residues formi	cyan.

(A) $G_n A_{6-n}$

	Ċ	32.5±0.	20.8±0.	19.2±0.		>	29.7±0	15.5±0	10.2±0			Ū	47.3±0	33.2±0	0.7±0.
	GAGG 4-4)	AGG <mark>AG</mark> G	AGGAGG	AGGAGG						A ₆	AAAA	-13)	AAAAA	AAAAA	AAAAA
	AG (7	31.6±0.4	20.8±0.2	9.8±0.1							AA	(A	22.5±0.3	20.5±0.3	15.4±0.2
$_4A_2$	AGGG 1-3)	AGAGG <mark>G</mark>	AGAGGG	AGAGGG		AGAG 1-8)	AGA <mark>GA</mark> G	AGAGAG	AGA <mark>GA</mark> G	$_{1}A_{5}$	AAAG	-12)	AAAAG	AAAAG	AAAAAG
U	AG.	15.1±0.4	9.3±0.3	8.2±0.2		AG.	41.4±0.4	20.8±0.3	5.4±0.2	.0	AA	(A	19.0±0.4	13.5±0.2	13.3±0.2
	3GGG 2)	AAGGGG	AAGGGG	AAGGGG		GGAG	AAGGAG	AAGGAG	AAGGAG		SAAG	-11)	AAGAAG	AAGAAG	AAGAAG
	AA((A	16.8±0.3	15.5±0.2	12.3±0.2	A_{3}	AA((A	19.6±0.5	10.7±0.4	8.0±0.1		AAC	(A-	28.4±0.3	7.2±0.3	3.5±0.1
$_{5}A_{1}$	GGGG 1)	AGGGGG	AGGGGG	AGGGGG	ື່ບ	GAGG 1-6)	AAGAGG	AAGAGG	AAGAGG	$^{2}A_{4}$	AGAG	-10)	AAGAG	AAAGAG	AAAGAG
0	AG (P	20.9±0.3	10.7±0.2	8.7±0.4		AA (P	25.0±0.2	11.6±0.1	5.8±0.2	0	AA	(A	26.6±0.2	17.5±0.3	8.4±0.2
ບິ	9995	<mark>GG</mark> GGGG	9999999	000000		AGGG 1-5)	AAAGGG	AAAGGG	AAGGG		AAGG	(6-)	AAAGG	AAAGG	AAAGG
-	500	32.5±0.3	20.8±0.4	19.2±0.2		AA (A	16.5±0.2	12.6±0.2	8.0±0.3		AA	()	21.3±0.3	16.6±0.3	11.9±0.3

-	
¢	
-	
n	r

(B) G	_n ۷ _{6-n}								
	G ₆	9	$_{5}V_{1}$			G	$_{4}V_{2}$		
GG	GGGG	VG(V	GGGG '-1)	VV(V	3666 '-2)	VG' V)	VGGG -3)	VG(V	svgg -4)
2.5±0.3	<mark>GGGGGG</mark>	38.5±0.3	VGGGGG	18.7±0.3	VVGGGG	14.7±0.2	VGVGGG	45.6±0.6	VGGVGG
0.8±0.4	GGGGGG	9.8±0.3	VGGGGG	10.0±0.4	VVGGGG	12.2±0.2	VGVGGG	9.2±0.2	VGGVGG
9.2±0.2	<mark>999999</mark> 9	7.8±0.3	VGGGGG	8.8±0.2	VVGGGG	8.3±0.2	VGVGGG	7.3±0.2	VGGVGG
			່ຍົ	V ₃					
VV V	VGGG /-5)	Λ) ΛΛ	GVGG 1-6)	0 0 0	GGVG	νGν (V	VGVG -8)		
29.7±0.6	VVVGGG	37.2±0.2	VV GVGG	81.8±0.4	VVGGVG	36.0±0.3	VGVGVG		
l5.5±0.2	VVVGGG	21.9±0.4	VVGVGG	1.3±0.1	VVGGVG	10.5±0.3	VGVGVG		
10.2±0.1	VVVGGG	5.0±0.1	VV <mark>GV</mark> GG	0.3±0.1	VVGGVG	5.2±0.2	VGV <mark>G</mark> VG		
		0	$_{2}V_{4}$			5	$_1V_5$		V ₆
M	VVGG	M	VGVG	VV	DVVG	M	DVVG	M	
<u>></u>	(6-/	·Λ)	-10)	·Λ)	-11)	·Λ)	-12)	·Λ)	-13)
17.3±0.4	VVVGG	47.6±0.3	VVV <mark>GV</mark> G	34.5±0.4	VVGVVG	18.7±0.4	VVVVVG	22.3±0.2	ννννν
33.2±0.2	VVVVGG	7.9±0.1	ννυσυς	8.7±0.3	υνσνυς	14.5±0.1	ϿΛΛΛΛ	17.6±0.3	ννννν
0.7±0.1	VVVGG	6.2±0.2	VVVGVG	7.9±0.2	VV GVVG	14.1±0.3	ννννς	11.7±0.1	ννννν

Sequence	% Variance of first 3 PC's
GGGGGG	65.8
AGGGGG	53.0
AAGGGG	60.6
AGAGGG	59.5
AGGAGG	63.5
AAAGGG	64.5
AAGAGG	59.8
AAGGAG	63.6
AGAGAG	59.7
AAAAGG	64.7
AAAGAG	68.5
AAGAAG	68.4
AAAAAG	64.0
AAAAAA	71.4

Table S2. Cumulative variance associated to the first three eigenvectors of (A) G_nA_{6-n} and (B) G_nV_{6-n} cyclic hexapeptides.

(B)	
Sequence	% Variance of first 3 PC's
GGGGGG	65.8
VGGGGG	56.9
VVGGGG	63.5
VGVGGG	64.1
VGGVGG	58.5
VVVGGG	63.9
VVGVGG	61.3
VVGGVG	65.5
VGVGVG	58.1
VVVVGG	67.0
VVVGVG	68.6
VVGVVG	65.9
VVVVVG	62.4
VVVVV	64.2

Figure S1. Conformational density profiles as a function of the first three largest principal components for S1 and S2, along with the NIP figures of all G_nA_{6-n} cyclic hexapeptides (A-N).

Figure S2. Conformational density profiles as a function of the first three largest principal components for S1 and S2, along with the NIP figures of all $G_n V_{6-n}$ cyclic hexapeptides (A-M).

(F) I'+II', (G) I+I, (H) II+II, (I) I'+I' and (J) II'+II' in cyclo-G₆. The C=O bonds of the two non-turning residues point toward different sides of the CP plane in A-D, but the same side in E-J. Solid black lines within structures highlight the interactions found in the accompanying tables. It is noted that due to their low populations in the structural ensemble of cyclo-G₆, configurations F-J were not identified as one of the clusters in the cluster analysis. Instead, structures containing turns whose dihedrals were within 30° of the ideal value for a given type of β turn Figure S3. Structure and Coulombic interaction (kJ/mol) between C=O and NH of the two non-turning residues (residues 3 and 6) for configurations with (A) type I β turn + type I' β turn, (B) II+I', (C) I+II', (D) II+II', (E) I+II. were extracted from the neutral replica of the BE-META simulation for analysis.

Ċ.	
(A-N	
tides	
apept	
c hex	
cycli	
$^{\rm h}A_{6-{\rm h}}$	
14 G	
of all	
tion c	
isodu	
lecon	
mic d	
dynai	
ermo	
S. Th	
ole S3	
Tat	

Table	S3. Th	lermod	lynamie	c decor	nposit	ion of a	all 14 G	i _n A _{6-n} c	yclic h	exapep	tides (2	A-N).							
(A) G ₆	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	ΔH_{W}	ΔH_{PW}	$-T \Delta S_{\rm p}^{\rm conf}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	0
32.5±0.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	o 4 اما
20.8±0.4%	- 1.12±0.05	1.53±0.76	-0.41±0.73	- 3.33±0.17	-0.29±0.80	-1.50±0.34 -	- 2.43±0.27	-2.84±0.94	0.10±0.04	6.19±0.12	-0.39±0.07	-1.65±0.12	-0.30±0.03	-0.41±0.02	1.01±1.07	-1.31±1.80	0.07±0.14	-1.43±0.45	גי ז/י
<mark>GGGGGG</mark> 19.2±0.2%	1.31±0.04	0.75±0.99	0.56±0.99	2.37±0.29	-0.92±1.05	-0.70±0.33	4.19±0.21	-3.63±0.94	-0.17±0.04	5.64±0.22	-0.43±0.02	-1.74±0.03	-0.51±0.08	-0.42±0.02	0.51±1.35	-1.43±1.73	0.03±0.07	-0.72±0.27	4 8
(B) A-1	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m M}^{ m LJ}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	00
20.9±0.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10 ²⁰
AGGGGG	- 1.67±0.09	2.03±1.98	-0.36±1.95	3.17±0.14	-1.14±1.87	6.34±0.27	- 12.56±0.50	-12.93±2.18	0.22±0.08	-9.19±0.17	0.28±0.08	1.67±0.09	4.02±0.04	0.28±0.02	-1.41±0.54	0.28±1.58	0.13±0.17	6.21±0.34	גי ז/י ַ
AGG <mark>GG</mark> G 8.7±0.4%	2.19±0.16	4.08±0.81	-1.89±0.84	0.66±0.24	-6.39±1.06	9.81±0.45	- 11.41±1.62	-13.30±1.66	1.40±0.05	1.71±0.27	-0.35±0.10	-1.51±0.12	-0.38±0.08	-0.21±0.02	2.27±0.81	-8.66±1.78	0.52±0.12	9.29±0.47	-10
(C) A-2	∇G	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{ m W}^{ m EE}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	çi ç
AAGGGG 16.8±0.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00	0.00	0.00	تہ ا ^ر Iom
15.5±0.2%	- 0.20±0.03	-3.55±1.02	3.74±1.00 -	- 0.90±0.18	1.68 ± 0.90	-6.13±0.28 -	2.93±0.09	6.67±1.05 -	0.01±0.03	-4.68±0.19	0.16±0.07	0.79±0.15	4.44±0.05	0.20±0.03	-2.35±1.54	4.02±1.52	0.68±0.09	-5.45±0.36	רז /י 0
AAGGGG 12.3±0.2%	0.78±0.09	0.15±1.09	0.63±1.09	3.73±0.30	1.75±1.28	-5.34±0.36 -	0.23±0.83	0.40±1.34	-0.53±0.04	0.47±0.19	-0.59±0.04	-1.40±0.12	5.93±0.09	-0.15±0.05	0.70±0.90	1.05±1.58	-1.04±0.16	-4.30±0.46	1 - 1 1 - 1
(D) A-3	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	$\Delta H_{ m PW}$	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{ m W}^{ m EE}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	07 00
AGAGGG 15.1±0.4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	یں 15 کا nol
AGAGGG 9.3±0.3%	- 1.20±0.13	-0.24±1.61	1.45±1.68	3.96±0.36	1.71±1.45	2.01±0.31	- 17.17±1.30	-15.72±1.40 -	2.27±0.10	-8.94±0.33	-0.01±0.07	1.26 ± 0.11	5.88±0.07	0.11±0.05	-1.97±1.39	3.68±2.11	0.70±0.17	2.71±0.37	גי ז/י
AGA <mark>GG</mark> G 8.2±0.2%	1.53±0.09	-1.40±0.96	2.93±0.90	-10.66±0.28	-10.24±0.88	19.50±0.52	- 21.15±1.05	-18.22±1.56	-1.54±0.05	-10.05±0.27	-0.07±0.09	0.41±0.13	0.56±0.07	0.03±0.03	1.42±0.74	-11.66±1.34	0.94±0.18	18.56±0.64 -	-15
(E) A-4	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\rm W}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{ m W}^{ m EE}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	00
AGGAGG 31.6±0.4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ات ^{ال}
20.8±0.2%	- 1.05±0.05	2.09±0.73	-1.04±0.74 -	1.28±0.14	1.35±0.75	2.02±0.41	4.98±0.23	-6.02±0.77	0.32±0.03	-5.91±0.10	0.41±0.04	1.21±0.02	3.07±0.03	0.25±0.01	-1.19±1.08	2.54±1.67	- 0.27±0.10	1.75±0.40	י ר ז (
9.8±0.1%	2.93±0.04	6.02±1.47	-3.10±1.50	6.96±0.08	-11.67±1.22	24.65±0.31	- 12.58±0.36	-15.68±1.15	0.93±0.03	-5.86±0.12	-0.72±0.03	-3.81±0.14	2.45±0.03	0.06±0.02	0.12±0.61	-11.79±0.89	-2.95±0.16	27.60±0.33	-30
(F) A-5	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	ΔH_{W}	ΔH_{PW}	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m pond}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	$\Delta H_{ m W}^{ m EE}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	CD
16.5±0.2%	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	iou
12.6±0.2%	0.67±0.06	0.54±0.48	0.13±0.45	-21.02±0.32	-30.25±0.72	51.81±0.56	1.38±0.49	1.50±0.65	- 4.20±0.06	-20.79±0.24	0.54±0.15	-0.06±0.13	-4.95 ± 0.10	0.04±0.03	2.06±1.18	-32.30±1.82	-1.71±0.08	53.52±0.52	רז / ס
AAAGGG 8.0±0.3%	1.79±0.11	-0.03±1.35	1.82±1.40	-2.16±0.35	-10.14±1.50	12.27±0.42	12.40±1.40	-10.58±1.40	- 3.89± 0.09	-8.52±0.19	0.92±0.19	2.86±0.08	-1.45±0.08	0.14±0.03	1.59±1.28	-11.73±2.55	-2.28±0.16	14.55±0.41	- 20 - 120
(G) A-6	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	ΔH_{W}	ΔH_{PW}	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	$\Delta H_{ m pond}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	$\Delta H_{ m W}^{ m EE}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	CO CO
25.0±0.2%	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	om 8 8
11.6±0.1%	- 1.92±0.04	4.46±0.71	-2.54±0.73 -	- 8.74±0.28	5.08±0.62	-9.36±0.49 -	- 8.15±0.36	-10.69±0.64	- 0.08±0.07	10.17±0.38	-0.68±0.11	-3.47±0.12	2.78±0.05	-0.14±0.03 -	3.11±1.37	1.97±1.77	-2.38±0.03	- 6.98±0.49 -	ן רז / ס
AAGA <mark>GG</mark> 5.8±0.2%	3.65±0.07	-0.32±1.84	3.98±1.88	-21.77±0.29	-31.16±1.82	52.61±0.41	- 42.07±1.67	-38.09±1.51	-4.81±0.12	-13.34±0.22	-0.87±0.09	-6.12±0.19	3.38±0.05	-0.01±0.02	5.66±1.47	-36.82±2.90	1.93±0.09	50.67±0.43	<u>9</u> 19 19

(H) A-7	∇G	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	ΔH_{W}	ΔH_{PW}	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	-50
19.6±0.5%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100 22 23
AAGGAG 10.7±0.4%	- 1.51±0.09	-2.62±2.61	4.12±2.62	-15.09±0.23	14.50±2.81	-32.21±0.48	- 13.63±0.93	-9.50±2.71	- 0.53±0.09	10.81±0.15	0.72±0.10	5.38±0.14	-2.18±0.09	-0.17±0.02	1.17 ± 0.95	13.32±3.00	2.05±0.09	-34.25±0.44 -	אז/י 0
AAGGAG 8.0±0.1%	2.24±0.08	0.61±2.86	1.62±2.87	-22.29±0.15	26.24±2.58	-47.92±0.70	- 19.22±0.63	-17.60±2.68 -	-2.31±0.10	17.62±0.32	0.04±0.06	0.65±0.15	6.40±0.08	-0.10±0.03	-1.41±1.64	27.64±1.80	1.55±0.24	-49.46±0.69	
(I) A-8	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\rm W}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{ m P}^{ m angle}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{W}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	00-09
AGA <mark>GA</mark> G 41.4±0.4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
<mark>AGAGA</mark> G 20.8±0.3%	- 1.71±0.06	-1.89±0.87	3.61±0.91	-24.55 ± 0.15	26.99±0.84	-53.43±0.24	- 10.73±0.11	-7.12±0.92	2.91±0.05	23.49±0.09	0.09±0.03	-0.21±0.09	4.12±0.10	-0.03±0.03	-2.67±1.09	29.66±1.35	0.07±0.08	-53.50±0.28	אז/י
AGA <mark>GA</mark> G 5.4±0.2%	5.11±0.10	1.90±2.79	3.21±2.83	5.21±0.16	-2.53±2.62	-0.78±0.50	49.91±2.29	-46.71±3.46	-1.22±0.09	3.34±0.25	0.73±0.06	1.04±0.14	0.96±0.06	0.36±0.03	-3.27±1.60	0.74±2.68	0.00±0.15	-0.78±0.65	- 30
6-A (L)	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{ m P}^{ m EE}$	$\Delta H_{ m P}^{ m bond}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	90 Q
21.3±0.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100 100
AAAGG 16.6±0.3%	0.62±0.03	-0.18±1.24	0.80±1.24	-17.59±0.17	-14.85±1.14	32.26±0.33	 8.28±0.25 	-7.48±1.23	4.37±0.01	-13.84±0.13	90.0±60.0	-2.59±0.11	3.02±0.03	0.09±0.02	1.03±1.00	-15.88±1.78	2.34±0.10	29.92±0.34 -	אז/י 0
AAAGG 11.9±0.3%	1.45±0.07	-3.15±1.25	4.60±1.24	4.92±0.08	6.53±1.25	-14.61±0.19	- 18.13±0.62	-13.53±1.56 -	-0.71±0.03	1.61±0.12	0.10±0.04	2.94±0.10	0.83±0.04	0.17±0.04	-0.77±2.68	7.30±3.62	2.94±0.14	-17.55±0.20	-20
(K) A-10	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	$\Delta H_{ m pond}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{ m P}^{ m imp.}$	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	6
AAGAG 26.6±0.2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:0	0.00	00.00	0.00	0.00	42 gou
AAAGAG 17.5±0.3%	- 1.04±0.06	-1.74±1.85	2.78±1.84	-40.16±0.14	42.71±2.10	-84.60±0.50	- 6.21±0.46	-3.43±1.89	- 1.05±0.07	38.90±0.25	-0.41±0.06	0.41±0.12	0.33±0.13	-0.13±0.03	-4.85±1.32	47.56±3.40	0.18±0.14	-84.78±0.57	ואז/י 0
AAAGAG 8.4±0.2%	2.88±0.06	-1.83±0.83	4.71±0.87	16.27±0.10	17.67±0.88	-35.76±0.45-	30.14±0.92	-25.43±0.71	3.38±0.10	7.32±0.11	1.05±0.08	7.65±0.07	-3.10±0.08	-0.03±0.03	-0.23±0.70	17.89±1.03	-0.34±0.13	-35.42±0.41	-45
(L) A-11	ΔG	∇H	$-T\Delta S$	$\Delta H_{ m P}$	ΔH_{W}	ΔH_{PW}	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{ m P}^{ m LJ}$	$\Delta H_{\rm P}^{\rm EE}$	$\Delta H_{ m pond}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{ m PW}^{ m EE}$	5
AAGAAG 28.4±0.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:0	0.00	0.00	0.00	0.00	00 00
AAGAAG 7.2±0.3%	- 3.42±0.12	3.71±1.63	-0.29±1.62 -	-36.71±0.14	37.90±1.65	-70.90±0.36	- 23.24±2.12	-23.53±2.56 -	- 0.38±0.04	40.44±0.10	-1.29±0.09	-2.14±0.12	-0.56±0.10	-0.12±0.03	-6.82±0.88	44.72±1.65	1.54±0.23	-72.44±0.41	ו איז/י 0
AAGAAG 3.5±0.1%	5.25±0.12	5.47±3.51	-0.22±3.52	34.28±0.27	32.06±3.36	-60.87±0.46	78.78±4.79	-79.00±5.35	2.21±0.07	23.26±0.22	0.11±0.08	5.12±0.21	3.64±0.10	-0.06±0.05	-7.13±1.72	39.19±3.68	-2.04±0.12	-58.83±0.50 -	-40
(M) A-12	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	$\Delta H_{ m W}$	ΔH_{PW}	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	$\Delta H_{ m pond}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{ m P}^{ m dih.}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	E0
AAAAG 19.0±0.4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00	0.00	0.00	0:00	0.00	22 6 23 6
AAAAG 13.5±0.2%	- 0.85±0.09	-2.04±1.00	2.89±1.03	0.19±0.27	3.45±1.11	-5.68±0.57	- 11.12±0.74	-8.24±0.88	5.22±0.05	6.53±0.20	-1.12±0.08	-4.08±0.10	4.04±0.10	0.04±0.02	-0.27±1.15	3.72±2.18	0.95±0.09	-6.64±0.56	ויז/י 0
AAAAG 13.3±0.2%	0.89±0.07	-4.68±0.50	5.56±0.50	18.98±0.25	-26.02±0.60	40.31±0.23	- 17.31±0.53	-11.75±0.75	1.60±0.10	-12.52±0.12	0.42±0.10	-0.94±0.12	-7.58±0.13	0.04±0.03	3.29±1.74	-29.31±2.14 -	-0.93±0.12	41.24±0.33	-25
(N) A-13	ΔG	ΔH	$-T\Delta S$	$\Delta H_{ m P}$	ΔH_{W}	ΔH_{PW}	$-T \Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	$\Delta H_{ m pond}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{ m W}^{ m LJ}$	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	$\Delta H_{ m PW}^{ m LJ}$	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	9
AAAAAA 22.5±0.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00	0.00	00.00	0.00	0.00	100 €
AAAAA A 20.5±0.3%	- 0.24±0.06	7.51±1.70	-7.27±1.70 -	- 9.57±0.19	22.74±1.79	-24.80±0.35-	4.53±0.25	-2.74±1.69	3.48±0.07	2.24±0.05	-1.26 ± 0.08	0.20±0.17	11.88±0.08	-0.01±0.02	-1.49±0.80	24.23±2.58	1.12 ± 0.08	-25.92±0.39 -	ויז/י 0
AAAAA 15.4±0.2%	0.96±0.04	4.38±1.32	-3.42±1.32	-18.11±0.09	23.95±1.34	-37.68±0.30	1.23±0.21	-4.65±1.28	-0.15±0.06	12.73±0.15	-0.17±0.05	0.79±0.16	4.97±0.08	-0.06±0.02	-3.25±1.14	27.19±1.94	0.84±0.17	-38.52±0.42	-20

06	15 Ion	גי ו/י 0	-15	20 20	22 00	אז/י 0		3 6	lon S	גי ו/י 0		20 20	100 32	רז /י 0	-25	QV UV	1000	ויא פ		9	lon S	וא 	35	S	40 g	וא)י 0	
$\Delta H_{ m PW}^{ m EE}$	0.00	6.24±0.29	0.33±0.33	$\Delta H_{ m PW}^{ m EE}$	0.00	36.32±0.87	-53.63±0.68	$\Delta H_{ m PW}^{ m EE}$	0.00	-33.76±0.38	-66.01±0.95	$\Delta H_{ m PW}^{ m EE}$	0.00	-40.26±0.43	2.02±0.40	$\Delta H_{ m PW}^{ m EE}$	0.00	37.51±0.41	17.45±0.75	$\Delta H_{ m PW}^{ m EE}$	0.00	17.89±0.36	-31.32±0.54	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	00.0	-92.15±1.32	-101.38±2.61
$\Delta H_{ m PW}^{ m LJ}$	00:00	0.67±0.14	0.16±0.08	$\Delta H_{ m PW}^{ m LJ}$	00:0	0.45±0.09	3.39±0.06	$\Delta H_{ m PW}^{ m LJ}$	00:00	0.65±0.18	-2.30±0.17	$\Delta H_{\mathrm{PW}}^{\mathrm{LJ}}$	0.00	90.0±99.0	6.79±0.09	$\Delta H_{\rm PW}^{\rm LJ}$	00:0	1.26±0.06	-0.71±0.12	$\Delta H_{\mathrm{PW}}^{\mathrm{LJ}}$	0.00	2.70±0.14	4.32±0.13	$\Delta H_{\rm PW}^{\rm LJ}$	0.00	5.18±0.49	-0.12±0.40
$\Delta H_{ m W}^{ m EE}$	0.00	-9.72±2.82	1.77±4.09	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	-24.10±2.67	25.56±4.23 -	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	14.63±3.53	35.26±2.46	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	24.18±2.96	-4.90±1.90	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	-13.47±2.86	-1.83±1.76	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	00.00	-12.09±1.86	13.67±5.04	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	35.71±6.13 -	65.58 ±12.53
$\Delta H_{ m W}^{ m LJ}$	0.00	- 0.98±1.26	-2.24±2.22	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	0.00	- 3.03±2.32	-1.38±2.21	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	0.00	- 1.56±1.93	-2.27±1.00	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	0.00	2.75±1.55	0.32±1.54	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	0.00	1.03±1.67	-2.08±0.82	$\Delta H_{ m W}^{ m LJ}$	0.00	0.16±1.21	0.17±3.23	$\Delta H_{ m W}^{ m LJ}$	0.00	-0.97±3.88	-5.94±10.57
$\Delta H_{ m P}^{ m imp.}$	0.00	-0.27±0.01	0.32±0.03	$\Delta H_{ m P}^{ m imp.}$	0.00	-0.28±0.03	-0.40±0.02	$\Delta H_{ m P}^{ m imp.}$	0.00	-0.12±0.03	-0.12±0.03	$\Delta H_{\rm P}^{\rm imp.}$	0.00	0.03±0.02	0.15±0.03	$\Delta H_{\rm P}^{\rm imp.}$	0.00	0.21±0.01	0.40±0.03	$\Delta H_{ m P}^{ m imp.}$	0.00	0.35±0.01	0.02±0.03	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	0.00	-0.04±0.06	-0.18±0.14
$\Delta H_{ m P}^{ m dih.}$	0.00	0.14±0.08	5.31±0.10	$\Delta H_{ m P}^{ m dih.}$	0.00	-10.78±0.07	-2.20±0.09	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	0.00	1.83±0.17	-0.94±0.16	$\Delta H_{ m P}^{ m dih.}$	0.00	4.62±0.06	6.38±0.07	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	0.00	-4.47±0.08	3.39±0.10	$\Delta H_{ m P}^{ m dih.}$	0.00	-3.81±0.03	1.47±0.09	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	0.00	2.70±0.24	11.96±0.34
$\Delta H_{ m P}^{ m angle}$	0.00	-0.94±0.09	2.05±0.14	$\Delta H_{\rm P}^{\rm angle}$	0.00	-0.91±0.11	-1.56±0.18	$\Delta H_{\rm P}^{\rm angle}$	0.00	0.45±0.09	-0.53±0.16	$\Delta H_{\rm P}^{\rm angle}$	0.00	$0.88 {\pm} 0.16$	2.07±0.21	$\Delta H_{\rm P}^{\rm angle}$	0.00	0.25±0.09	2.94±0.21	$\Delta H_{\rm P}^{\rm angle}$	0.00	-3.82±0.13	1.48±0.26	$\Delta H_{\rm P}^{\rm angle}$	0.00	0.98±0.35	1.78±0.64
$\Delta H_{ m P}^{ m bond}$	0.00	-0.35±0.08	0.79±0.07	$\Delta H_{ m P}^{ m bond}$	0.00	-0.25±0.07	-0.48±0.12	$\Delta H_{ m pond}^{ m bond}$	0.00	-0.26±0.09	-0.19±0.17	$\Delta H_{\rm p}^{\rm bond}$	0.00	0.45 ± 0.11	0.44±0.13	$\Delta H_{ m P}^{ m bond}$	0.00	0.60±0.10	0.52±0.12	$\Delta H_{ m pond}^{ m bond}$	0.00	-1.07±0.09	0.23±0.14	$\Delta H_{\rm p}^{\rm bond}$	0.00	-0.12±0.27	0.39±0.58
$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	0.00	3.02±0.09	-5.30±0.20	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	0.00	-4.36±0.39	30.08±0.32	$\Delta H_{\rm P}^{\rm EE}$	0.00	10.87±0.20	29.29±0.49	$\Delta H_{\rm P}^{\rm EE}$	0.00	18.06±0.14	-5.69±0.16	$\Delta H_{\rm P}^{\rm EE}$	0.00	-11.49±0.19	-14.35±0.31	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	0.00	-0.38±0.15	13.79±0.11	$\Delta H_{\rm P}^{\rm EE}$	0.00	44.76±0.62	40.23±0.84
$\Delta H_{ m P}^{ m LJ}$	0.00	- 1.35±0.05	-0.39±0.03	$\Delta H_{ m P}^{ m LJ}$	0.00	2.89±0.09	-2.15±0.10	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$	0.00	4.22±0.08	7.50±0.08	$\Delta H_{ m P}^{ m LJ}$	0.00	1.48±0.02	10.34±0.12	$\Delta H_{\rm P}^{\rm LJ}$	0.00	- 0.05±0.08	0.47±0.04	$\Delta H_{\rm P}^{\rm LJ}$	0.00	0.31±0.07	-2.82±0.11	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$	0.00	- 3.78±0.14	4.25±0.39
$-T \Delta S_{\mathrm{W}}$	0.00	-13.07±2.24	-28.04±2.75	$-T\Delta S_{\mathrm{W}}$	0.00	-22.30±1.91 -	-23.61±2.97	$-T\Delta S_{\mathrm{W}}$	0.00	4.80±1.82	-4.37±2.42	$-T\Delta S_{\mathrm{W}}$	0.00	-29.10±1.83	-43.10±2.96	$-T\Delta S_{\mathrm{W}}$	0.00	-14.63±1.84 -	-29.83±1.75 -	$-T\Delta S_{\rm W}$	0.00	-4.77±0.81	-69.19±3.93	$-T\Delta S_{\rm W}$	0.00	326.75±10.13	1019.11±42.59
$-T \Delta S_{\rm P}^{\rm conf}$	0.00	- 15.35±1.03	29.24±1.79	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 27.62±1.38	28.28±1.05	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	3.30±0.52	5.94±1.06	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	00:0	- 28.71±0.86	50.43±1.33	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 9.36±0.41	26.31±0.26	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	6.48±0.33	73.16±1.96	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	337.23±10.71	1016.51±36.68-
ΔH_{PW}	0.00	6.91±0.20	0.49±0.38	ΔH_{PW}	0.00	36.77±0.90	-50.24±0.71	ΔH_{PW}	0.00	-34.40±0.44-	-68.31±0.88	ΔH_{PW}	0.00	-39.60±0.40	8.81±0.46	ΔH_{PW}	0.00	36.24±0.40	16.75±0.69 -	ΔH_{PW}	0.00	20.59±0.30	-27.00±0.42	ΔH_{PW}	0.00	-86.97±1.13	-101.50±2.42
$\Delta H_{ m W}$	0.00	-8.74±1.90	-0.47±2.29	$\Delta H_{ m W}$	0.00	-21.08±0.67	24.18 <u>±</u> 2.44	$\Delta H_{ m W}$	0.00	16.19±1.73	33.00±1.79	$\Delta H_{ m W}$	0.00	21.43±1.63	-4.58±1.74	ΔH_{W}	0.00	-14.50±1.62	-3.92±1.57	$\Delta H_{ m W}$	0.00	-11.94±0.87	13.84±2.48	ΔH_{W}	0.00	34.75±3.43	59.64±8.77
$\Delta H_{ m P}$	0.00	- 2.96±0.15	2.79±0.33	$\Delta H_{ m P}$	0.00	19.46±0.40	-23.28±0.34	$\Delta H_{ m P}$	0.00	-16.99±0.24	-35.01±0.34	$\Delta H_{ m P}$	0.00	-22.56±0.15	6.99±0.39	$\Delta H_{ m P}$	0.00	14.86±0.17	6.62±0.30	$\Delta H_{ m P}$	0.00	9.04±0.17	-14.18±0.08	$\Delta H_{ m P}$	0.00	-52.07±0.88	-58.42±1.16
$-T\Delta S$	0.00	2.28±1.71	1.20±2.01	$-T\Delta S$	0.00	5.32±0.58	4.67±2.24	$-T\Delta S$	0.00	1.50±1.49	1.58±1.47	$-T\Delta S$	0.00	-0.39±1.35 -	7.33±1.66	$-T\Delta S$	0.00	-5.27±1.48 -	-3.53±1.88	$-T\Delta S$	0.00	1.71±0.93	3.97±2.07	$-T\Delta S$	0.00	10.47±3.03 -	-2.60±6.67
ΔH	0.00	1.13±1.72	2.81±2.00	∇H	0.00	-3.77±0.68	-2.78±2.30	∇H	0.00	-1.22 ± 1.50	-0.31±1.52	∇H	0.00	4.38±1.38	-2.75±1.74	∇H	0.00	6.89±1.53	6.20±1.91	ΔH	0.00	-0.39±0.93	1.02±2.12	ΔH	0.00	-0.15±3.00	16.56±6.84
ΔG	0.00	- 3.41±0.07	4.01±0.11	ΔG	0.00	- 1.55±0.12	1.88±0.09	ΔG	0.00	0.28±0.04	1.26±0.06	∇G	0.00	- 3.99±0.07	4.58±0.09	∇G	0.00	- 1.62±0.05	2.68±0.05	∇G	0.00	1.32±0.05	4.99±0.06	ΔG	0.00	10.32±0.08	13.96±0.19
(A) V-1	VGGGGGG 38.5±0.3%	VGGGGG	VGGGGGG	(B) V-2	VVGGGG 18.7±0.3%	VVGGGG	VVGGGG 8.8±0.2%	(C) V-3	VGVGGG 14.7±0.2%	VGVGGG	VGVGGG 8.3±0.2%	(D) V-4	VGGVGG 45.6±0.6%	VGGVGG	VGGVGG 7.3±0.2%	(E) V-5	VWGGG 29.7±0.6%	VVVGGG	VVVGGG	(F) V-6	V/GVGG 37.2±0.2%	VVGVGG 21.9±0.4%	VVGVGG 5.0±0.1%	(G) V-7	81.8±0.4%	VVGGVG 1.3±0.1%	VVGGVG 0.3±0.1%

Table S4. Thermodynamic decomposition of all 13 G_nV_{6-n} cyclic hexapeptides (A–M).

00	00 00 00	אז/י 0	-40	00-00	100	או∕י 0	-40 80	6	00 10u	גי ז/י 0	-40		101	רז/י פ	-30	8	101	אז/י 0	-40	20 12	900 8	ויז/י 0	
$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	0.00	4.36±0.56	-77.39±1.30	$\Delta H_{ m PW}^{ m EE}$	0.00	-81.96±0.13	-13.33±1.11	$\Delta H_{ m PW}^{ m EE}$	0.00	82.12+0.47	138.41±0.32	$\Delta H_{\mathrm{PW}}^{\mathrm{EE}}$	0.00	-60.30±0.64	-99.24±1.81	$\Delta H_{ m PW}^{ m EE}$	0.00	78.74±0.26	46.29 ±0.34	$\Delta H_{\rm PW}^{\rm EE}$	0.00	-46.02±0.26	-102.21±0.39
$\Delta H_{ m PW}^{ m LJ}$	0.00	- 2.49±0.16	-0.44±0.17	$\Delta H_{ m PW}^{ m LJ}$	0.00	0.39±0.10	2.75±0.40	$\Delta H_{ m PW}^{ m LJ}$	0.00	0.76±0.06	0.89±0.06	$\Delta H_{\mathrm{PW}}^{\mathrm{LJ}}$	0.00	- 1.43±0.16	-2.54±0.21	$\Delta H_{\mathrm{PW}}^{\mathrm{LJ}}$	0.00	2.05±0.11	-5.01±0.14	$\Delta H_{\mathrm{PW}}^{\mathrm{LJ}}$	0.00	- 1.25±0.11	2.78±0.13
$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	-6.46±2.90	35.80±3.54	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	45.20±1.11	12.57±10.58	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	-41.37±2.93	-68.19±3.94	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	30.55±2.56	48.88±1.65	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	-40.75±3.53 -	-30.61±3.03	$\Delta H_{\mathrm{W}}^{\mathrm{EE}}$	0.00	27.87±2.11	48.52±1.54
$\Delta H_{ m W}^{ m LJ}$	0.00	- 1.95±1.05	0.67±1.79	$\Delta H_{\rm W}^{\rm LJ}$	0.00	3.43±1.11	-7.72±5.15	$\Delta H_{ m W}^{ m LJ}$	0.00	1.89±0.24	3.49±1.90	$\Delta H_{ m W}^{ m LJ}$	0.00	2.66±1.90	-0.75±0.52	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	0.00	3.49±2.01	3.43±2.43	$\Delta H_{\mathrm{W}}^{\mathrm{LJ}}$	0.00	-1.21±2.53	-3.31±0.48
$\Delta H_{ m P}^{ m imp.}$	0.00	0.12±0.03	0.01±0.04	$\Delta H_{\rm P}^{\rm imp.}$	0.00	-0.13±0.02	-0.11±0.10	$\Delta H_{ m P}^{ m imp.}$	0.00	0.03±0.01	0.05±0.03	$\Delta H_{ m P}^{ m imp.}$	0.00	0.44±0.01	-0.11±0.02	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	0.00	-0.04±0.03	0.42±0.02	$\Delta H_{ m P}^{ m imp.}$	0.00	0.12±0.02	-0.03±0.01
$\Delta H_{ m P}^{ m dih.}$	0.00	-4.10 ± 0.09	6.05±0.11	$\Delta H_{ m P}^{ m dih.}$	0.00	3.35±0.11	9.10±0.18	$\Delta H_{ m P}^{ m dih.}$	0.00	-9.07±0.07	0.61±0.11	$\Delta H_{ m P}^{ m dih.}$	0.00	5.41±0.07	7.63±0.14	$\Delta H_{\rm P}^{\rm dih.}$	0.00	-2.96±0.07	2.00±0.04	$\Delta H_{ m P}^{ m dih.}$	0.00	7.11±0.14	-13.40±0.10
$\Delta H_{ m P}^{ m angle}$	0.00	0.91±0.12	0.62±0.25	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	0.00	-1.49±0.11	2.25±0.83	$\Delta H_{\rm P}^{\rm angle}$	0.00	1.12 ± 0.21	1.88±0.23	$\Delta H_{\rm P}^{\rm angle}$	0.00	2.95 ± 0.21	7.06±0.12	$\Delta H_{\rm P}^{\rm angle}$	0.00	3.47±0.21	6.36±0.27	$\Delta H_{\rm P}^{\rm angle}$	0.00	-3.75±0.30	-1.11±0.13
$\Delta H_{ m P}^{ m bond}$	0.00	0.45±0.07	0.36±0.15	$\Delta H_{ m pond}^{ m bond}$	0.00	0.23±0.08	0.51±0.28	$\Delta H_{ m pond}^{ m bond}$	0.00	0.28±0.12	-0.00±0.14	$\Delta H_{ m pond}^{ m bond}$	0.00	0.43±0.10	1.27±0.10	$\Delta H_{\rm p}^{\rm bond}$	0.00	-0.08 ± 0.12	0.28±0.09	$\Delta H_{ m pond}^{ m bond}$	0.00	-0.13±0.06	0.65±0.15
$\Delta H_{ m P}^{ m EE}$	0.00	8.82±0.23	36.23±0.54	$\Delta H_{ m P}^{ m EE}$	0.00	39.65±0.04	8.23±0.70	$\Delta H_{\mathrm{P}}^{\mathrm{EE}}$	0.00	-25.87±0.43	-60.52±0.30	$\Delta H_{\rm P}^{\rm EE}$	0.00	22.50±0.30	39.80±0.79	$\Delta H_{\rm P}^{\rm EE}$	0.00	-40.40±0.22	-27.99±0.22	$\Delta H_{ m P}^{ m EE}$	0.00	23.66±0.15	65.67±0.07
$\Delta H_{ m P}^{ m LJ}$	0.00	-7.08±0.09	-2.38±0.12	$\Delta H_{\rm P}^{\rm LJ}$	0.00	1.32±0.11	-7.07±0.47	$\Delta H_{ m P}^{ m LJ}$	0.00	-4.63±0.17	-5.32±0.18	$\Delta H_{\rm P}^{\rm LJ}$	0.00	0.85±0.11	-1.23±0.11	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$	00.00	- 5.14±0.17	4.91±0.23	$\Delta H_{ m P}^{ m LJ}$	0.00	5.97±0.10	-1.44±0.10
$-T\Delta S_{\mathrm{W}}$	0.00	-30.52±2.09 -	-60.23±2.69	$-T\Delta S_{\rm W}$	0.00	3.66±0.30	-697.26±35.34	$-T\Delta S_{\mathrm{W}}$	0.00	-49.14±2.33 -	-65.64±1.92	$-T\Delta S_{\rm W}$	0.00	-34.46±1.32 -	-39.05±1.56 -	$-T\Delta S_{\mathrm{W}}$	0.00	-14.03±1.68 -	-4.41±1.38	$-T\Delta S_{\mathrm{W}}$	0.00	-21.27±1.25 -	-2.85±0.38
$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 32.09±1.27	65.38±3.13	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	00.0	3.26±0.24	700.76 ±38.4 0	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 48.35±0.99	- 59.44±2.09	$-T \Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 38.00±1.74	- 41.93±1.89	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 10.10±0.72	5.04±0.66	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	0.00	- 18.93±0.75	8.31±0.90
ΔH_{PW}	0.00	6.85±0.51	-77.83±1.33	ΔH_{PW}	0.00	-81.58±0.20	-10.58±1.17-	ΔH_{PW}	0.00	82.88±0.49	139.29±0.36	ΔH_{PW}	0.00	-58.87±0.54	-101.78±1.69	ΔH_{PW}	0.00	76.69±0.35	41.28±0.44	ΔH_{PW}	0.00	-44.77±0.32	<u>-99.43±0.34</u>
ΔH_{W}	0.00	-4.51±1.86	36.47±1.83	$\Delta H_{ m W}$	0.00	41.77±0.21	4.85±5.53	$\Delta H_{ m W}$	0.00	-39.48±2.81	-64.70±2.44	$\Delta H_{ m W}$	0.00	27.89±0.74	48.13±1.16	$\Delta H_{ m W}$	0.00	-37.26±1.65	-27.19±1.61	$\Delta H_{ m W}$	0.00	26.65±0.67	45.22±1.14
$\Delta H_{ m P}$	0.00	0.88±0.32	-40.90±0.64	$\Delta H_{ m P}$	0.00	40.29±0.14	12.90±1.14	$\Delta H_{ m P}$	0.00	38.12±0.35	63.30±0.30	$\Delta H_{ m P}$	0.00	- 30.87±0.25	54.43±0.71	$\Delta H_{ m P}$	0.00	34.87±0.21	-14.02±0.17	$\Delta H_{ m P}$	0.00	-21.04±0.26	-50.35±0.40
$-T\Delta S$	0.00	1.57±1.94	5.15±1.31	$-T\Delta S$	0.00	0.39±0.14	3.51±5.63	$-T\Delta S$	0.00	-0.79±2.65	-6.20±2.49	$-T\Delta S$	0.00	3.54±1.25	2.88±1.39	$-T\Delta S$	0.00	-3.93±1.38	0.63±1.50	$-T\Delta S$	0.00	-2.34±0.71	5.46±1.06
ΔH	0.00	1.45±1.94	-0.46±1.26	∇H	0.00	0.49±0.14	7.17±5.52	ΔH	0.00	5.28±2.63	11.29±2.44	ΔH	0.00	-0.10±1.20	0.78±1.33	ΔH	0.00	4.57±1.39	0.07±1.49	ΔH	00.0	2.92±0.71	-3.86±1.07
ΔG	0.00	- 3.02±0.09	4.69±0.10	∇G	0.00	- 0.88±0.03	-10.68±0.19	ΔG	0.00	4.49±0.05	5.09±0.08	∇G	0.00	3.44±0.07	3.67±0.10	ΔG	0.00	0.64±0.06	0.70±0.06	∇G	0.00	0.59±0.04	1.60±0.03
(H) V-8	VGVGVG 36.0±0.3%	VGVGVG 10.5±0.3%	VGV <mark>GV</mark> G 5.2±0.2%	6-V (I)	V VVGG 47.3±0.4%	VWVGG 33.2±0.2%	0.7±0.1%	J) V-10	WVGVG 47.6±0.3%	VVVGVG 7.9±0.1%	VVGVG 6.2±0.2%	(K) V-11	VVGVVG 34.5±0.4%	VVGVVG 8.7±0.3%	VVGVVG 7.9±0.2%	(L) V-12	VVVVG 18.7±0.4%	14.5±0.1%	V_VVVG 14.1±0.3%	(M) V-13	22.3±0.2%	17.6±0.3%	VVVVV 11.7±0.1%

References

(1) Damas, J. M.; Filipe, L. C.; Campos, S. R.; Lousa, D.; Victor, B. L.; Baptista, A. M.; Soares, C. M. J. Chem. Theory Comput. **2013**, *9*, 5148.