Electronic Supplementary Information

Dithieno[3,2-*b*:2',3'-*d*]pyrrole based, NIR absorbing, solution processable, small molecule donor for efficient bulk heterojunction solar cells.

Manohar Reddy Busireddy,^a Venkata Niladri Raju Mantena,^a Narendra Reddy Chereddy,^{a,*} Balaiah Shanigaram,^b Bhanuprakash Kotamarthi,^{b,*} Subhayan Biswas,^c Ganesh Datt Sharma^{c,*} and Jayathirtha Rao Vaidya^{a,d*}

^aCrop Protection Chemicals Division, ^bInorganic & Physical Chemistry Division, ^dAcSIR, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India

^cDepartment of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, India.

Corresponding author Tel.: +91 40 27193933; +91 40 27193174 E-Mail: chereddynarendra@gmail.com; jrao@jict.res.in; gdsharma273@gmail.com

Table of contents	Page
¹ H- and ¹³ C-NMR spectra of ICT3 (Figs. S1-S2)	S2-S3
MALDI-MS analytical data of ICT3 (Figs. S3)	S4
Chemical structures of ICT1 and ICT2 and their photophysical and electrochemical data (Fig. S4)	S5
Absorption and emission spectra of ICT3 (Fig. S5)	S5
Optimized structure of ICT3 (Fig. S6)	S6
Results of the theoretical calculations (Tables S1-S3)	S6
Percentage contribution of different moieties of ICT3 to their HOMO and LUMO (Fig. S7)	S7
Theoretically generated UV-Visible absorption spectra of ICT3 (Fig. S8)	S7
NMR spectra of the intermediates (Figs. S9-S27)	S8-S17

Fig. S1. ¹H NMR spectrum of ICT3

Fig. S2. ¹³C NMR spectrum of ICT3

M V N RAJU , MNR-NF

Fig. S3. MALDI-MS spectrum of ICT3

		-	Material Code	λ _{max} (nm) ^a	ξ (x 10 ⁵ mol ⁻¹ cm ⁻¹) ^a	λ _{max} (nm) ^b	Е ₀₋₀ (eV) ^с	E _g ^{opt} (eV) ^d	E _{ox} (V)	E _{HOMO} (eV)	E _{LUMO} (eV) ^e
EH	OEH	0	ICT1	586	1.71	604	1.96	1.68	0.29	-5.39	-3.43
s in	s s s	S N-Ви	ICT2	594	1.65	608	2.02	1.63	0.38	-5.48	-3.46
Bu-Ny s's	OEH EH	EH ICT 1	Active la	ayer	J _{sc} (mA/cm ²)	V _{oc} (V)	FF	PCE (%)	(£	R _s 2cm ²)	R _{sh} (Ω cm ²)
S S NT	s for a second s	S N-Bu	ICT1:PC (as cas	71BM st)	6.84	0.92	0.44	2.77	2	4.06	510
Bu-N S	s	EH ICT 2	ICT2:PC (as cas	71BM st)	7.26	0.96	0.47	3.27	2	2.16	564
EH = 2-ethylhexyl Bu = n-butyl	EH		ICT1:PC (TSA	71 BM ()	10.15	0.87	0.58	5.12	1	2.92	686
			ICT2:PC (TSA	71BM ()	10.68	0.92	0.60	5.90	ç	9.08	746

^ain dilute chloroform solution (10 μ M), ^bin thin film cast from chloroform solution, ^cestimated from intersection of absorption and emission spectra in chloroform solution, ^destimated from E_g^{opt}=1240/ λ_{onset} , λ_{onset} is onset absorption wavelength in thin film, ^eE_{LUMO}= E_{HOMO}-E_{o-o}.

Fig. S4. Chemical structures of ICT1 and ICT2 and their photophysical, electrochemical and photovoltaic data

Fig. S5. Absorption and fluorescence spectra of ICT3 (10 µM) measured in chloroform solution.

Fig. S6. Optimized structure of ICT3.

Table S1 Calculated properties of **ICT3** at M06/6-31G(d,p) level. HOMO and LUMO energies (eV), HOMO–LUMO gap HLG (eV), Optical gap OG (eV), oscillator strength *f*, the wavelength maxima, the major contribution (%)to the first excited state and the dipole moment μ_g (D).^a

Molecule	НОМО	LUMO	HLG	λ	0G	f	Major contribution (%)	$\mu_{g}{}^{a}$
	(eV)	(eV)	(eV)	(nm)	(eV)			(D)
ICT3	-5.1	-2.69	2.41	628	1.974	3.520	$H - 1 \rightarrow L + 1(4\%)$	9.07
							$H \rightarrow L (95\%)$	
	-5.04	-2.71	2.33	676	1.834	3.707	$H - 1 \rightarrow L + 1(4\%)$	12.27
							$H \rightarrow L (93\%)$	

^a values given in *Italic font* are the values obtained in the solvent phase CF.

Table S2 Calculated properties of **ICT3** at B3LYP/6-31G(d,p) level. HOMO and LUMO energies (eV), HOMO–LUMO gap HLG (eV), Optical gap OG (eV), oscillator strength *f*, the wavelength maxima, the major contribution (%)to the first excited state and the dipole moment μ_g (D).^a

Molecule	НОМО	LUMO	HLG	λ	OG	f	Major	μ_{g}^{b}
	(eV)	(eV)	(eV)	(nm)			contribution (%)	(D)
ІСТ3	-4.82	-2.76	2.06	664	1.867	3.291	$H \rightarrow L (99\%)$	9.72
	-4.75	-2.76	1.97	724	1.712	3.484	$H \rightarrow L (98\%)$	13.15

^a values given in *Italic font* are the values obtained in the solvent phase CF.

Table S3 Calculated properties of **ICT3** at PBE/6-31G(d,p) level. HOMO and LUMO energies (eV), HOMO–LUMO gap HLG (eV), Optical gap OG (eV), oscillator strength *f*, the wavelength maxima, the major contribution (%)to the first excited state and the dipole moment μ_g (D).^a

Molecule	HOMO	LUMO	HLG	λ	OG	f	f Major contribution(%)	
	(eV)	(eV)	(eV)	(nm)	(eV)			(D)
ІСТ3	-4.82	-2.76	2.06	839	1.4770	1.975	$H - 1 \rightarrow L + 1 (6\%)$ $H \rightarrow L + 2 (3\%)$ $H \rightarrow L (91\%)$	9.70

Fig. S7. Graphical representation of percentage contribution of different moieties of ICT3.

Fig. S8. Simulated UV-Vis Absorption spectra of **ICT3** using M06 and B3LYP in gas phase and solvent chloroform (CF)

Fig. S9. ¹H NMR spectrum of 1

S S

Fig. S10. ¹³C NMR spectrum of 1

Fig. S11. EI-MS spectrum of 1

Fig. S12. ¹H NMR spectrum of 2

Fig. S13. ¹³C NMR spectrum of 2

=== CPC DIVISION @ CSIR-IICT ===

Fig. S14. ESI-MS spectrum of 2

Fig. S15. ¹H NMR spectrum of 3

Fig. S16. ¹³C NMR spectrum of 3

Fig. S17. EI-MS spectrum of 3

Fig. S18. ¹H NMR spectrum of 4

Fig. S19. ¹³C NMR spectrum of 4

=== CPC DIVISION @ CSIR-IICT ===

Fig. S20. ESI-MS spectrum of 4

Fig. S21. ¹H NMR spectrum of 5

Fig. S22. ¹³C NMR spectrum of 5

=== CPC DIVISION @ CSIR-IICT ===

Fig. S23. ESI-MS spectrum of 5

Fig. S24. ¹H NMR spectrum of 6

Fig. S25. ¹³C NMR spectrum of 6

MANOHAR REDDY , JRAO-MR-NA

 Data:
 MR-NA-10001.1G1[c]
 12 Sep
 2016
 18:48
 Cal:
 TOF
 MIX-12-09-16
 REF
 12 Sep
 2016
 18:46

 Shimadzu
 Biotech
 Axima
 Performance
 2.9.3.20110624:
 Mode
 Reflectron_HiRes, Power:
 65, Blanked, P.Ext. @
 1500 (bin 79)

 %Int.
 27 mV[sum= 2696 mV]
 Profiles
 1-100 Smooth
 Gauss 5

Fig. S26. ESI-MS spectrum of 6

Fig. S27. ¹H NMR spectrum of *n*-butyl rhodanine