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S1. Parallel graphene coating on FeBO3/LiFeBO3 electrodes

In order to verify that the separation between the electrode surface and the graphene coating is large, as 
predicted by the PBE+U functional, BEEF-vdW+U calculations were performed and the results are 
shown in Fig. 1. As seen, the BEEF-vdW+U functional (a) binds the graphene coating to the electrode 
surfaces with a coating–electrode separation of 3.7 Å, whereas the PBE+U functional (b) does not have 
a local energy minimum. However, the energy is constant for separations of about 4.0 Å and above, 
indicating a negligible interaction between the coating and the electrode surfaces, and this distance was 
therefore taken as the optimal coating–electrode distance predicted by the PBE+U functional.

Fig. S1  (a) BEEF-vdW+U and (b) PBE+U total energies (shifted by the maximum energy).

S2. Stability analysis of LiFeBO3 surfaces

All the surfaces formed in this study maintained the B–O bonds in the borate groups, since breaking 
these B–O bonds would result in prohibitively large surface energies.
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After the cleaving of the (100) surface of the LiFeBO3 electrode, one O atom from two of the BO3 
groups (O atoms A and B in Fig. S2(a)) at this surface protruded outwards from the surface as seen in 
Fig. S2(a). However, upon relaxation of this surface, a significant tilting of these two BO3 groups at the 
surface was observed, as the surface-protruding O atoms moved towards the surface layer to ensure a 
fourfold O coordination of Li in the surface as seen in Fig. S2(b).

The LiFeBO3 surface energies are calculated by subtracting the energy cost of forming a six-layer slab 
with the energy cost of forming the same number of layers from the bulk structure. For the (100) 
surface, the slab in our model—shown in Fig. S2(b)—consists of six layers (one such layer is indicated 
by the blue box), and a unit cell, consisting of two layers, was used as the bulk structure. Therefore, the 
surface energy was

𝐸𝑠𝑢𝑟𝑓 =
𝐸𝑠𝑖𝑥 𝑙𝑎𝑦𝑒𝑟𝑠

𝑠𝑙𝑎𝑏 ‒ 3𝐸𝑡𝑤𝑜 𝑙𝑎𝑦𝑒𝑟𝑠
𝑏𝑢𝑙𝑘

2𝐴
,

where A is the (100) surface area of the simulation cell. The very same holds for the (010) surface, 
where the slab—shown in Fig. 1(c)—also consists of six layers (layer in blue box).

Similarly, for the (001) surface, a six-layer slab—shown in Fig. 2(d)—was used, but along the c-axis 
the unit cell has four layers, and the surface-energy expression for the (001) is therefore

𝐸𝑠𝑢𝑟𝑓 =
𝐸𝑠𝑖𝑥 𝑙𝑎𝑦𝑒𝑟𝑠

𝑠𝑙𝑎𝑏 ‒
3
2

𝐸𝑓𝑜𝑢𝑟 𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑛 𝑐
𝑏𝑢𝑙𝑘

2𝐴
.

For all surfaces, the two middle layers of the slab were spatially fixed to the bulk configuration.
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Fig. S2  (a) The (100) surface before structure relaxation, (b) the relaxed (100) surface, (c) the relaxed (010) 
surface and (d) the relaxed (001) surface of LiFeBO3.
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S3. Adsorption of Li ion on pristine graphene

The energy of a Li ion versus the distance to the graphene sheet (coating) is shown in Fig. S3. For these 
and the below calculations (S3 and S4) on pristine and defected graphene, the same computational 
method as in the main text was used with the exception of the following details deployed specifically in 
the graphene study: A  cell was used, sampled on a 2×2×1 k-point mesh in the 3 3𝑎1 × 3 3𝑎2

Brillouin zone using a 10 meV Gaussian smearing of the electronic levels.

Fig. S3  Energy profile for the adsorption of a Li ion on a pristine graphene sheet as a function of the distance to 
the graphene sheet.

S4. Activation barriers for Li-ion diffusion through pristine and defected graphene

The activation barriers for Li diffusion through pristine graphene, a Stone–Wales defect, a 
monovacancy and a 5-8-5 divacancy are shown in Fig. S4. The Stone–Wales defect was formed by 
rotating two adjacent atoms in the graphene sheet by 90° as shown in the inset in Fig. S4(b). The 
monovacancy and 5-8-5 divacancy were formed by the removal of one and two atoms, respectively, in 
the graphene sheet. All the systems remained planar during Li-ion diffusion.
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Fig. S4  NEB barriers for Li-ion diffusion through (a) a hollow site of pristine graphene, (b) a Stone–Wales 
defect with the two C atoms rotated to form the defect shown in red, (c) a monovacancy in graphene with the C 
atoms surrounding the monovacancy shown in red, and (d) a 5-8-5 divacancy in graphene with the C atoms 
surrounding the divacancy shown in red.

A previous study1 of Li-ion diffusion through pristine graphene sheet and a graphene 5-8-5 divacancy 
found higher NEB barriers than ours, 10.07 and 1.43 eV respectively. It should be noted that the 
authors in their study used the molecule circumcoronene (C54H18) to model graphene. Due to its large 
HOMO–LUMO gap2 circumcoronene screens Coulombic interactions poorly as compared to graphene 
which is a semimetal. This is most likely the origin of the higher barriers calculated in their study. 
Another study3 found a NEB barrier of 7.98 eV for Li-vacancy diffusion through graphite which is in 
good agree with our barrier of 7.41 eV, although the Li concentrations are different, but we do not 
expect this to significantly affect the diffusion barriers.

S5. Stability of possible anchoring configurations of coating on electrode surfaces
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The second-lowest and third-lowest anchoring configurations of the graphene-coating layers to the 
electrodes are shown in Fig. S5. The energy of the anchoring relative to the B–O anchoring (lowest; 
discussed in the main text) and bond lengths between coating-edge C atoms and electrode-surface 
atoms are listed in Tab. S1.

E – EB–O anchoring [meV / surface-bonding C] Fe-O anchoring Fe-B anchoring
FeBO3 284 1501
LiFeBO3 470 922
Bond length [Å] Fe–C O–C Fe–C B–C
FeBO3 2.16 1.33 2.06 1.65
LiFeBO3 2.11 1.39 2.13 1.64

Tab. S1  Energies of the second- and third-lowest configurations relative to the most stable configuration (B–O 
anchoring) and the bond lengths between the species participating in the anchoring of the coating to the 
electrode.

Fig. S5  Anchoring configurations of the graphene coating in which the two C atoms in each coating layer 
closest to the electrode surface bond (a) to one surface Fe atom and one surface O atom in FeBO3 and (b) 
LiFeBO3, and (c) to one surface Fe atom and one surface B atom in FeBO3 and (d) LiFeBO3.

S6. Diffusion of Li ions and degradative species in graphite coating



8

The diffusion barriers for a Li ion moving between two hollow sites in graphite is shown in Fig. S6(a) 
with a barrier of 0.47 eV. Additionally, we have modeled the diffusion of possible degradative species, 
H2O and O2, in the graphite coating (i.e., graphite far away from the anchoring sites of the misaligned 
coating on the FeBO3/LiFeBO3 surfaces). The resulting diffusion barrier obtained from a NEB 
calculation is shown in Fig. S6 with barriers of 1.0 eV for O2 and 0.1 eV for H2O diffusion. In all these 
calculations, the experimental graphite-layer distance of 3.39 Å was used3.
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Fig. S6  NEB-calculated diffusion barrier for species jumping between two adjacent hollow sites in graphite: (a) 
Diffusion barrier for a Li ion colored in green (initial position), blue (intermediate positions) and yellow (final 
position). (b) Barrier for O2 diffusing between two hollow sites with initial (final) configuration shown in the left 
(right) inset figure. (c) Barrier for H2O diffusing between two hollow sites with initial (final) configuration 
shown in the left (right) inset figure.
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