°Supplementary Information for

Nitrosodisulfide [S₂NO][–] (perthionitrite) is a true intermediate during the "cross-talk" of nitrosyl and sulfide

Juan P. Marcolongo, *, a Uriel N. Morzan, a Ari Zeida, a Damián A. Scherlisa and José A. Olabe*, a

^a Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET,

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2,

C1428EHA Buenos Aires, Argentina

1. Force Field parameters for acetone and dichloromethane	2
2. Details of the real time TD-DFT simulations	5
3. Calculated spectra for the species presented in Table 1	7
4. Optimized geometrical parameters for S ₂ NO ⁻ using PCM model	8
5. Optimized geometrical parameters and spectroscopic properties of S ₂ NO ⁻ employing different xc-function	als
and basis	.9
6. Cumulative works obtained in the free energy profile calculations	.10
7. References	.11

1. Force Field parameters for acetone and dichloromethane

<u>1- Acetone Force Field:</u>

AMBER12 Preparation File:

0 0 2

This	is a 1	remark	line							
molec	ule.re	es								
ACE	INT	0								
CORRE	CT	OMIT	DU	BEG						
0.0	0000									
1	DUMM	DU	М	0	-1	-2	0.000	.0	.0	.00000
2	DUMM	DU	М	1	0	-1	1.449	.0	.0	.00000
3	DUMM	DU	М	2	1	0	1.523	111.21	.0	.00000
4	C1	СТ	М	3	2	1	1.540	111.208	-180.000	-0.267278
5	H1	HC	Ε	4	3	2	1.081	155.459	40.754	0.070586
6	H2	HC	Ε	4	3	2	1.087	46.671	57.234	0.070586
7	HЗ	HC	Ε	4	3	2	1.086	86.938	174.442	0.070586
8	C2	С	М	4	3	2	1.514	79.458	-74.171	0.667582
9	01	0	Ε	8	4	3	1.192	121.661	156.463	-0.556545
10	C3	СТ	М	8	4	3	1.514	116.633	-23.542	-0.267278
11	H4	HC	Ε	10	8	4	1.087	110.326	-59.178	0.070586
12	Н5	HC	Ε	10	8	4	1.085	110.381	59.116	0.070586
13	НG	НC	Ε	10	8	4	1.081	109.781	-179.982	0.070586

LOOP

IMPROPER C1 C3 C2 O1

DONE STOP

AMBER12 Parameters File:

rem	lark	goes	he	ere					
MAS	S								
СТ	12.0	10			0	.878	3		
HC	1.00	8			0	.135	5		
С	12.0	10			0	.610	5		
0	16.0	00			0	.434	1		
BON CT- CT- C -	ID ·HC ·C ·O	337. 328. 648.	30 30 00		1.(1.; 1.2	092 508 214			
ANG	LE								
CT-	-C -O)	68	.03	0		123	.110)
CT-	C -C	Т	62	.82	0		116	.050)
HC-	СТ-Н	С	39	.43	0		108	.350)

HC-CT-C	47.200	109.680		
DIHE				
СТ-С -СТ-НС	2 1	0.000	180.000	2.000
HC-CT-C -O	1	0.800	0.000	-1.000
HC-CT-C -O	1	0.080	180.000	3.000
IMPROPER				
CT-CT-C -0		1.1	180.0	2.0
NONBON				
СТ	1.908	30 0.1094		
HC	1.487	70 0.0157		
С	1.908	30 0.0860		
0	1.661	12 0.2100		

2- Dichloromethane Force Field:

2

AMBER12 Preparation File:

0

0

This is a remark line molecule.res DCM INT 0 CORRECT OMIT DU BEG 0.0000 1 DUMM 0 -1 0.000 .0 DU М -2 .0 .00000 2 0 DUMM DU М 1 -1 1.449 .0 .0 .00000 3 DUMM 2 1 0 1.523 111.21 DU М .0 .00000 4 Cl1 Cl 3 2 1 1.540 111.208 М -180.000 -0.069987 5 C1 СТ 4 3 2 1.790 94.068 96.011 -0.305330 М 6 H1 H2 5 4 3 1.088 108.056 Ε 65.063 0.225987 7 H2 5 4 3 H2 Ε 1.087 108.062 -55.715 0.220075 8 Cl2 Cl 5 4 3 1.792 113.320 -175.306 -0.070744 М

LOOP

IMPROPER

DONE STOP

AMBER12 Parameters File:

remark goes here MASS Cl 35.450 1.910 CT 12.010 0.878 H2 1.008 0.135

BOND

Cl-CT 279.00 1.786 CT-H2 337.30 1.092

ANGLE

40.330	107.650
54.230	111.030
39.430	108.350
	40.330 54.230 39.430

DIHE

IMPROPER

NONBON

Cl	1.9480	0.2650
СТ	1.9080	0.1094
Н2	1.4870	0.0157

2. Details of the real time TD-DFT simulations

In order to obtain an absorption spectrum from an electron dynamics simulation, we followed the same procedure as in reference 1. The system was subjected to an initial δ function like electric-field kick, narrow enough to homogeneously excite all electronic frequencies. This was achieved using a linearly polarized Gaussian type perturbation (E(t)) imposed to the ground state density

$$\stackrel{\mathsf{r}}{E}(t) = E_0 \exp\left[\frac{-t^2}{2\omega^2}\right] \hat{r}$$
(S3)

The values utilized for the maximum (E₀) and width (ω) of the gaussian perturbation where 0.01 au and 2.24.10⁻³ fs respectively. By performing a real time simulation in each polarization of the perturbation (symmetries in the system may alleviate this need), the polarizability tensor $\alpha(\omega)$ was constructed from the Fourier transforms of the time dependent dipole moment $\mu(t)$

$$\alpha_{ik}(\omega) = \frac{\mu_k^{ind}(\omega)}{E_i(\omega)} = \frac{\int dt e^{i\omega t} \mu_k^{ind}(t) e^{-\gamma t}}{\int dt e^{i\omega t} E_i(t)}$$
(S4)

The damping factor γ introduces a broadening in the absorption spectrum peaks emulating the lifetime of the excited states. Values in the order of 0.2 fs⁻¹ were adopted for this parameter to compute the spectra. Finally, the absorption cross section ($\sigma(\omega)$) was obtained from the trace of the frequency domain polarizability tensor

$$\sigma(\omega) = \frac{4\pi\omega}{c} \operatorname{Im}[\alpha(\omega)]$$
(S5)

And the dipole strength function $S(\omega)$ was calculated as:

$$S(\omega) = \frac{1}{3} Tr[\alpha(\omega)]$$
(S6)

Absorption spectra presented in this work were calculated by performing this real-time calculations at different geometries derived from the nuclear QM/MM dynamics, averaging the spectra obtained for each configuration until the absorption maximum was stabilized at a certain value. Depending on the flexibility showed by the molecule across the simulations, the process took between 10 and 100 snapshots to reach convergence, as shown in the example presented in Figure S1.

Figure S1. Convergence process for the spectrum of S₂NO⁻ in acetone (N = 42). Each spectrum $E_i(\lambda)$ is calculated as $E_i(\lambda) = \sum_{j=1}^{i} e_j(\lambda)$, where $e_j(\lambda)$ represents a single spectrum for a given geometry. All spectra

presented in this work were calculated as $E(\lambda) = \frac{E_N(\lambda)}{N}$.

Figure S2. Calculated spectra for 1- *cis*-ONOO⁻ in H₂O, 2- *cis*-ONOO⁻ in CH₂Cl₂, 3- EtSNO in H₂O, 4- SN(SH)O in MeCN, 5- SN(OH)S in MeCN, 6- HSNO in H₂O and 7- SNO⁻ in MeCN.

4. Optimized geometrical parameters for S_2NO using PCM model.

The parameters presented in Table S1 were obtained by geometry optimization with Gaussian 09^2 at PBE/dzvp level of theory. The solvent was modeled as a polarizable continuum characterized by its dielectric constant ε . The absorption maxima corresponding to these geometries were calculated using *linear response* TD-DFT as implemented in Gaussian 09.

Parameter	Water	Acetone	Acetonitrile	
3	78.3553	20.493	35.688	
$d(N_1-O_1) / Å$	1.24	1.24	1.24	
$d(N_1-S_1) / \text{\AA}$	1.79	1.79	1.79	$ S_1^{S_2} $
$d(S_1-S_2) / \text{\AA}$	2.04	2.04	2.04	
$\theta(O_1\text{-}N_1\text{-}S_1) / {}^{o}$	118.8	119.0	118.9	$ \rangle_{O_1}^{N_1} $
$\theta(N_1-S_1-S_2) / \circ$	113.6	114.2	113.8	
λ_{max} / nm	434.26	435.74	434.88	

Table S1. Geometry Optimization parameters and absorption maxima for S₂NO⁻ calculated with PCM

approximation and linear response TD-DFT.

Functional / basis	λ_{max} /nm	λ_{max} / nm
Tunctional / basis	(Water)	(Acetone)
PBE / dzvp	425.22	448.42
PBE / aug-cc-pvtz	430.88	454.74
B3LYP / dzvp	420.26	448.37
B3LYP / aug-cc-pvtz	427.28	455.64
B3P86 / dzvp	415.74	443.45
B3P86 / aug-cc-pvtz	421.74	449.58
PW91 / dzvp	426.96	450.28
PW91 / aug-cc-pvtz	432.73	456.66
TPSSh / dzvp	417.76	444.20
TPSSh / aug-cc-pvtz	423.48	450.40

5. Spectroscopic properties of S_2NO^2 employing different xc-functionals and basis.

Table S2. Absorption maximum of selected structures extracted from the MD in acetone and water for

S₂NO⁻ calculated with PCM approximation at different levels of theory.

Figure S3. Calculated sprectra for selected geometries (black, red and blue lines) of SSNO⁻ in acetone (left) and water (right). Dashed lines were calculated using tzvp basis set and thick lines were calculated using dzvp basis set.

Figure S4. Accumulated work obtained in the free energy profile simulations across $\xi_1 + \xi_2$ (top) and ξ_3 (bottom). The thick line represents the Jarzynski estimator for the free energy of the process across the coordinates.

7. References

- U. N. Morzan, F. F. Ramírez, M. B. Oviedo, C. G. Sánchez, D. A. Scherlis and M. C. González Lebrero, *J. Chem. Phys.*, 2014, 140, 164105.
- 2. Gaussian 09, Revision E.01, M. J. Frisch et al., *Gaussian, Inc.*, Wallingford CT, 2009.