Electronic Supplementary Information for

High-pressure dielectric behavior of BaMoO₄: A combined experimental

and theoretical study

Tianru Qin,^a Qinglin Wang,^b Li Wang,^a Huacai Yan,^a Cailong Liu,^a Yonghao Han,^a Yanzhang Ma^{cd} and Chunxiao Gao^{*a}

^aState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China ^bShandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science & Information Technology of Liaocheng University, Liaocheng 252059, China

^cDepartment of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA ^dCenter for High Pressure Science & Technology Advanced Research, Changchun 130012, China

*To whom correspondence should be addressed.

Email: cc060109@qq.com

Supplementary Material

BaMoO₄ powder with purity of 99.9% was bought from the Alfa Aesar Co. The initial structure of the sample was the tetragonal structure (space group I41/a), and has been confirmed by a powder X-ray diffractometer with Cu-K α radiation. Figure S1 gives the XRD spectrum.

Figure S1. X-ray diffraction pattern of the BaMoO₄ sample at ambient pressure.

The energy band structures of the tetragonal and monoclinic phase were calculated at different pressures by the first-principles calculations, the variation tendency of band gap (E_g) along with pressure was obtained. In Table S1, We make a comparation between dE_g/dP and $d(\ln R)/d(P)$ through the following Arrhennius relationship.

$$d(lnR)/dP = (1/2k_BT)(dE_g/dP)$$
(S1)

where *R* is the resistance received from the experiment, E_g represents the band gap received from the theoretical calculations, k_B is the Boltzmann constant, and *T* represents room temperature. The result indicates that the effect of pressure on the band gap did not play a vital role in the two phases. Therefore, we contend that the growth of *R* is mainly caused by the increasing defect levels, and the lattice scattering was enhanced.

Phase	Pressure region	$(2k_BT)^{-1}\mathrm{d}E_g/\mathrm{d}P~(\mathrm{GPa^{-1}})$	$d(\ln R)/dP$ (GPa ⁻¹)
	(GPa)	(theoretical)	(experimental)
Tetragonal	1.9~4.8	0.02	0.05
Monoclinic	4.8~8.8	0.01	0.14

Table S1. The pressure dependence of E_g and $\ln R$ for the first two phases of BaMoO₄