Supplementary Information for

Tuning the Vibrational Coupling of H₃O⁺ by Changing Its Solvation Environment

Jake A. Tan^{abc}, Jheng-Wei Li^{ad}, Cheng-chau Chiu^a, Hsin-Yi Liao^e Hai Thi Huynh^a, and Jer-Lai Kuo^{acd*†}

^a Institute of Atomic and Molecular Sciences, Academia Sinica, No.1 Roosevelt Road, Section 4, Taipei 10617, Taiwan (ROC)

^b Department of Chemistry, National Tsing Hua University, 101 Kuang-Fu Road, Section 2, Hsinchu 30013, Taiwan (ROC)

[°] Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 115, Taiwan (ROC)

^d Department of Physics, National Taiwan University, No.1 Roosevelt Road, Section 4, Taipei 10617, Taiwan (ROC)

^eDepartment of Science Education, National Taipei University of Education, No.134, Section 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan (ROC)

AUTHOR INFORMATION

Corresponding Author

* E-mail: jlkuo@pub.iams.sinica.edu.tw

Present Addresses

[†] Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan (ROC)

Table of Contents

- A. Minimum structures for H₃O⁺•Rg₃ (Rg=Ne,Ar,Kr, and Xe). Table S1
- B. Symmetry species for the vibrational normal modes of H₃O⁺•Rg₃. Table S2
- C. Harmonic frequencies in cm⁻¹ and intensities in km/mol for H₃O⁺•Rg₃ (Rg=Ne, Ar, Kr, and Xe) at MP2/aug-cc-pVDZ. Table S3
- D. Harmonic frequencies in cm⁻¹ and intensities in km/mol for H₃O⁺•Rg₃ (Rg=Ne, Ar, Kr, and Xe) at MP2/aug-cc-pVDZ. Table S4
- E. RDAV-6D frequencies and integrated absorption coefficients for the hydrons (H₃O⁺•Rg₃) at MP2/aug-cc-pVDZ (for Ne and Ar) and MP2/aug-cc-pVDZ-PP (for Kr and Xe). Table S5
- F. RDAV-6D frequencies and integrated absorption coefficients for the hydrons (H₃O⁺•Rg₃) at MP2/aug-cc-pVDZ (for Ne and Ar) and MP2/aug-cc-pVDZ-PP (for Kr and Xe). Table S6
- G. Determination of coupling constants from an experimentally observable $(A_1 \leftrightarrow A_1)$ Fermi resonance.
- H. Determination of coupling constants from an experimentally observable $(E \leftrightarrow E)$ Fermi resonance.

A. Minimum structures for the singlet H₃O⁺•Rg₃ (Rg=Ne, Ar, Kr, and Xe).

Table S1. Cartesian coordinates in Angstroms for the minimum structures of singlet $H_3O^+ Rg_3$ at MP2/aug-cc-pVDZ for Ne and Ar and MP2/aug-cc-pVDZ-PP for Kr and Xe. The latter basis set was obtained from EMSL basis set library.

	H	$I_3O^+ \bullet Ne_3$							
	Х	Y	Z						
0	0.000401	-0.000165	0.553918						
Н	-0.337567	0.874636	0.255860						
Н	-0.588314	-0.730178	0.255869						
Н	0.926883	-0.144921	0.255564						
Ne	-1.016100	2.629071	-0.173242						
Ne	-1.769668	-2.194016	-0.173272						
Ne	2.785347	-0.434876	-0.173350						
$H_3O^+ \cdot Ar_3$									
	Х	Y	Z						
0	0.000734	0.000007	0.744866						
Н	0.939151	-0.059257	0.437176						
Н	-0.417269	0.842395	0.437512						
Н	-0.519913	-0.783145	0.437615						
Ar	3.022460	-0.190398	-0.134943						
Ar	-1.346476	2.711533	-0.134855						
Ar	-1.676420	-2.521138	-0.134159						
	H	$H_3O^+ Kr_3$							
	X Y Z								
0	-0.000128	-0.000385	0.838224						
Н	0.802715	-0.491688	0.52211						

Н	0.023879	0.940561	0.522119							
Н	-0.827109	-0.450100	0.522412							
Kr	2.651749	-1.622940	-0.0766							
Kr	0.080074	3.107370	-0.076574							
Kr	-2.731781	-1.484310	-0.076615							
$H_3O^+\bullet Xe_3$										
	Х	Y	Z							
0	-0.000041	-0.000052	0.944159							
Н	-0.930699	-0.140529	0.616803							
Н	0.586962	-0.735766	0.616785							
Н	0.343623	0.876193	0.616898							
Xe	-3.232500	-0.488039	-0.05805							
Xe	2.038921	-2.555341	-0.058048							
Xe	1.193588	3.043389	-0.058046							

B. Symmetry species for the vibrational normal modes of H₃O⁺•Rg₃

We briefly describe the group theoretical treatment to determine the symmetry species of the vibrational normal modes for $H_3O^+ \cdot Rg_3$. Interested readers can refer to the excellent work of Douglas and Hollingsworth, *Symmetry in Bonding and Spectra: An Introduction*.

Point Group: C_{3v}

Character Table:

C _{3v}	Е	2C ₃	$3\sigma_v$	Linear functions
A ₁	1	1	1	Z
A ₂	1	1	-1	Rz
E	2	-1	0	$(\mathbf{x},\mathbf{y})(\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$

Determination of the reducible representation

C _{3v}	E	2C ₃	$3\sigma_v$	Comment							
Determi	Determination of $\Gamma_{total} = \Gamma_{3N}$										
Γ _{trans}	3	0	1	A ₁ +E							
Гп	7	1	3	unmoved atoms							
Γ _{3N}	21	0	3	$\Gamma_{3N} \otimes \Gamma_n$							
Determi	nation of	Γ _{vib}									
Γ _{3N}	21	0	3								
Γ _{trans}	3	0	1								
Γ _{rot}	3	0	-1								

Γ _{vib}	15	0	3	$\Gamma_{3N} - \Gamma_{trans} - \Gamma_{rot}$
Determi	nation of	Γ _{stretch}	and Γ_{bend}	d
Γ _{vib}	15	0	3	
Γ _n	7	1	3	unmoved atoms
A ₁	1	1	1	A ₁
Γ _{stretch}	6	0	2	$\Gamma_n - A_1$
Γ _{bend}	9	0	1	$\Gamma_{vib} - \Gamma_{stretch}$

By either inspection or use of the standard decomposition formula.

$$\Gamma_{stretch} = 2A_1 + 2E$$
 and $\Gamma_{bend} = 2A_1 + A_2 + 3E$

Table S2. Symmetry species for the 15 normal modes of H₃O⁺•Rg₃

	Symm	etry Classificati	on for the Normal Modes of H ₃ O ⁺ •Rg ₃
	Symmetry Species	G09 mode #	Description
	٨	4	Symmetric Rg ₃ stretching
Γ _{stretch}	A	13	Symmetric H_3O^+ stretching
	Е	1 and 2	Asymmetric Rg ₃ stretching
		14 and 15	Asymmetric H ₃ O ⁺ stretching
	•	3	H_3O^+ as one unit bending \perp to Rg ₃ plane
	A ₁	10	H_3O^+ umbrella motion
Г	A ₂	7	H_3O^+ hindered rotation
l bend		5 and 6	Degenerate H ₃ O ⁺ swinging above the Rg ₃ plane
	Е	8 and 9	Degenerate H ₃ O ⁺ deformation
		11 and 12	Degenerate H ₃ O ⁺ bending

C. Harmonic frequencies in cm⁻¹ and intensities in km/mol for H₃O⁺•Rg₃ (Rg=Ne, Ar, Kr, and Xe) at MP2/aug-cc-pVDZ.

Table S3. Harmonic frequencies (ω_e) and absorption intensities in km/mol for the 15 normal modes of $H_3O^+\bullet Rg_3$.

Normal Mode Numbering		H ₃ O ⁺ •Ne ₃		H ₃ O	$H_3O^+ \bullet Ar_3$		$H_3O^+\bullet Kr_3$		H ₃ O ⁺ •Xe ₃	
Herzberg	G09	ω _e	Inten.	ω _e	Inten.	ω _e	Inten.	ω _e	Inten.	
Order	output	(cm^{-1})	(km/mol)	(cm^{-1})	(km/mol)	(cm^{-1})	(km/mol)	(cm^{-1})	(km/mol)	
	1	21.3	4.33	19.4	1.65	14.5	0.75	11.2	0.38	
V ₁₀	2	21.3	4.33	19.4	1.65	14.5	0.75	11.2	0.38	
ν_4	3	35.8	20.45	36.3	8.64	31.1	4.30	24.8	2.12	
V ₃	4	92.7	7.26	99.2	11.11	95.2	12.40	92.8	10.85	
V9	5	131.2	34.57	150.5	55.74	162.3	61.92	164.1	62.52	
	6	131.2	34.60	150.6	55.82	162.4	61.96	164.1	62.53	

v ₅	7	255.1	0.00	338.4	0.00	398.5	0.00	419.7	0.00
	8	263.6	87.12	368.2	69.72	427.9	65.65	453.7	60.85
V8	9	263.6	87.15	368.2	69.63	428.0	65.58	453.7	60.89
v_2	10	917.4	354.05	962.1	226.50	991.8	166.59	1016.2	113.11
	11	1679.7	65.98	1668.9	25.18	1661.6	10.80	1649.5	2.69
V7	12	1679.7	66.01	1669.0	25.14	1661.6	10.86	1649.5	2.70
ν_1	13	3528.0	54.26	3418.9	103.19	3354.6	128.97	3291.8	158.27
v ₆	14	3634.2	748.54	3491.9	1410.93	3406.3	1879.68	3322.5	2456.17
	15	3634.2	1.09	3491.9	1.09	3406.4	1.09	3322.6	1.09

D. Harmonic frequencies in cm⁻¹ and intensities in km/mol for D₃O⁺•Rg₃ (Rg=Ne, Ar, Kr, and Xe) at MP2/aug-cc-pVDZ.

Table S4. Harmonic frequencies (ω_e) and absorption intensities in km/mol for the 15 normal modes of $D_3O^+ \cdot Rg_3$.

Normal Numbe	Normal Mode Numbering		$D_3O^+ \cdot Ne_3$		$D_3O^+ \cdot Ar_3$		$D_3O^+\bullet Kr_3$		$D_3O^+\bullet Xe_3$	
Herzberg	G09	ω _e	Inten.	ω _e	Inten.	ω _e	Inten.	ω _e	Inten.	
Order	output	(cm^{-1})	(km/mol)	(cm^{-1})	(km/mol)	(cm^{-1})	(km/mol)	(cm^{-1})	(km/mol)	
	1	21.1	3.91	19.3	1.53	14.5	0.72	11.1	0.36	
v_{10}	2	21.1	3.91	19.3	1.53	14.5	0.72	11.1	0.36	
ν_4	3	34.3	17.42	35.1	7.72	30.4	4.04	24.4	2.02	
v ₃	4	91.7	5.68	96.9	9.07	91.6	10.4	88.5	9.23	
	5	126.3	30.64	143.2	50.02	153.2	55.72	154.4	56.26	
V9	6	126.4	30.68	143.2	50.09	153.3	55.75	154.4	56.27	
v ₅	7	180.9	0.00	239.7	0.00	282.0	0.00	297.0	0.00	
	8	187.6	38.29	262.1	28.22	304.5	26.04	322.9	23.97	
V ₈	9	187.7	38.3	262.1	28.2	304.6	26.01	322.9	23.98	
v ₂	10	691.9	162.6	723.5	103.2	744.9	75.37	763.3	50.4	
	11	1217.1	22.12	1207.7	4.98	1201.6	0.77	1192.3	0.17	
\mathbf{v}_7	12	1217.1	22.13	1207.7	4.98	1201.6	0.78	1192.3	0.16	
ν_1	13	2511.3	28.92	2434.8	53.81	2389.8	66.79	2346.1	81.45	
	14	2672.3	377.46	2570.4	709.69	2508.2	947.5	2446.6	1243.08	
v ₆	15	2672.3	377.34	2570.5	709.4	2508.2	947.37	2446.6	1242.95	

E. RDAV-6D frequencies and integrated absorption coefficients for the hydrons (H₃O⁺•Rg₃) at MP2/aug-cc-pVDZ (for Ne and Ar) and MP2/aug-cc-pVDZ-PP (for Kr and Xe).

Table S5. RDAV-6D anharmonic frequencies in cm⁻¹ and integrated absorption coefficients in km/mol for $H_3O^+ \bullet Rg_3$.

$ \Psi_k\rangle$	H ₃ O ⁺ •Ne ₃		H_3O^+	•Ar ₃	H ₃ O ⁺ •Kr ₃		H ₃ O ⁺ •Xe ₃	
	cm ⁻¹	km/mol	cm ⁻¹	km/mol	cm ⁻¹	km/mol	cm ⁻¹	km/mol
1	226.80	0.0	335.84	0.0	386.59	0.0	416.23	0.0
2	440.34	1.6	652.23	2.2	752.97	2.4	813.98	2.4
3	651.72	0.0	952.60	0.0	1102.61	0.0	1193.95	0.0
4	894.15	0.0	1267.65	0.0	1455.64	0.0	1566.76	0.0
5	1216.99	0.0	1607.19	38.7	1596.02	20.0	1580.71	7.8

6	1618.60	86.7	1607.26	38.8	1596.13	20.1	1580.78	7.8
7	1618.63	86.7	1610.12	0.0	1822.04	0.0	1934.64	0.0
8	1713.67	0.0	1929.85	34.3	1969.14	51.4	1983.38	73.2
9	1833.70	12.8	1929.88	34.3	1969.22	51.3	1983.42	73.3
10	1833.74	12.8	2173.97	0.0	2162.96	0.0	2271.78	0.0
11	2039.07	0.1	2234.76	0.0	2323.64	0.0	2368.97	0.0
12	2039.12	0.1	2234.78	0.0	2323.69	0.0	2368.98	0.0
13	2247.42	0.1	2527.06	0.5	2334.13	0.0	2479.21	0.0
14	2247.52	0.2	2527.08	0.5	2663.99	1.0	2738.71	2.4
15	2482.37	0.0	2552.00	0.0	2664.01	1.0	2738.71	2.4
16	2482.45	0.0	2602.51	0.0	2777.86	0.0	2955.69	0.0
17	2761.19	0.0	2834.28	0.0	3009.95	0.0	3019.51	2467.5
18	2761.24	0.0	2834.30	0.0	3009.96	0.0	3020.27	2467.2
19	3208.79	5.7	3165.29	58.5	3108.21	125.0	3031.97	168.3
20	3224.84	33.9	3178.84	9.7	3118.18	1595.7	3103.10	0.0
21	3226.76	34.6	3178.86	7.0	3118.64	1601.9	3103.11	0.0
22	3283.91	0.0	3184.21	482.3	3187.46	23.1	3148.15	8.1
23	3283.97	0.0	3185.52	496.4	3207.80	434.5	3165.09	142.8
24	3352.68	60.8	3231.86	61.4	3209.46	416.6	3166.83	141.0
25	3412.71	0.0	3268.73	1045.0	3375.88	0.0	3457.23	0.1
26	3429.14	115.1	3269.62	1032.9	3375.90	0.0	3457.82	0.1
27	3429.70	197.6	3488.14	0.0	3500.05	0.0	3463.02	0.0
28	3432.03	624.9	3504.56	0.4	3511.84	0.3	3468.14	0.0
29	3432.16	619.5	3505.63	0.4	3512.61	0.3	3468.14	0.0

F. RDAV-6D frequencies and integrated absorption coefficients for the deuterons (D₃O⁺•Rg₃) at MP2/aug-cc-pVDZ (for Ne and Ar) and MP2/aug-cc-pVDZ-PP (for Kr and Xe).

Table S6. RDAV-6D anharmonic frequencies in cm⁻¹ and integrated absorption coefficients in km/mol for $D_3O^+ \bullet Rg_3$.

$ \Psi_k\rangle$	$D_3O^+ \cdot I$	Ne ₃	D_3O^+	Ar ₃	D_3O^+	•Kr ₃	D_3O^+	•Xe ₃
	cm ⁻¹	km/mol	cm ⁻¹	km/mol	cm ⁻¹	km/mol	cm ⁻¹	km/mol
1	165.97	0.0	239.94	0.0	275.40	0.0	295.45	0.0
2	321.04	0.6	471.60	0.8	541.31	0.9	582.39	0.9
3	471.55	0.0	696.53	0.0	797.37	0.0	859.85	0.0
4	640.72	0.0	924.83	0.0	1045.37	0.0	1126.97	0.0
5	827.96	0.0	1161.65	0.0	1166.69	2.9	1155.40	0.2
6	1170.21	0.0	1175.06	9.2	1166.75	2.9	1155.42	0.2
7	1183.98	30.4	1175.11	9.2	1278.92	0.0	1376.87	0.0
8	1184.00	30.4	1403.87	0.0	1436.07	16.1	1444.85	22.4
9	1344.11	4.2	1409.09	11.0	1436.11	16.1	1444.86	22.4
10	1344.13	4.2	1409.12	11.0	1490.21	0.0	1607.51	0.0
11	1494.64	0.0	1501.83	0.0	1668.21	0.0	1726.11	0.0
12	1494.67	0.0	1635.30	0.0	1696.36	0.0	1726.11	0.0
13	1647.76	0.0	1635.33	0.0	1696.39	0.0	1812.95	0.0
14	1649.91	0.0	1728.12	0.0	1947.50	0.1	1998.39	0.2
15	1808.47	0.0	1855.81	0.1	1947.51	0.1	1998.40	0.2
16	1808.52	0.0	1855.83	0.1	2044.80	0.0	2213.22	85.4
17	1983.01	0.0	2080.74	0.0	2191.34	0.0	2215.73	0.0

18	1993.08	0.0	2080.76	0.0	2191.34	0.0	2260.89	0.0
19	1998.25	0.0	2308.44	44.5	2264.76	68.3	2260.90	0.0
20	1998.29	0.0	2318.05	0.0	2316.51	243.7	2272.22	882.2
21	2329.82	0.0	2318.06	0.0	2317.13	249.2	2272.36	879.0
22	2329.86	0.0	2340.16	64.3	2330.96	6.5	2303.91	3.0
23	2348.69	4.7	2340.80	65.0	2380.19	760.7	2325.97	412.4
24	2361.25	9.4	2355.49	17.4	2380.36	757.3	2325.99	415.2
25	2361.83	9.5	2444.22	701.1	2422.63	0.1	2507.65	0.0
26	2423.39	30.9	2444.36	700.4	2422.65	0.1	2507.67	0.0
27	2505.18	0.0	2548.23	0.0	2545.79	0.0	2516.26	0.0
28	2515.94	0.1	2557.08	0.0	2584.36	0.0	2569.72	0.0
29	2517.07	0.1	2557.12	0.0	2584.96	0.0	2569.76	0.0

G. Determination of coupling constants from an experimentally observable $(A_1 \leftrightarrow A_1)$ Fermi resonance.

In the main article, we discussed that Fermi resonance occurs between the H-O-H bending first overtones and O-H stretching fundamentals. Provided that such special effect is observed in an experimental spectrum, their anharmonic coupling constant can be determined using a simple two-level (two-state) system. We will first briefly review the two-level system and proceed on its utility in extracting coupling constants.

Part 1: Revisiting the two-level system

We begin by considering the following 2×2 Hamiltonian in the $\{|1\rangle, |2\rangle\}$ representation. The matrix elements are expressed as

Furthermore, we impose that $\varepsilon_1 \le \varepsilon_2$. The 2×2 Hamiltonian is written as

$$\mathbf{H} = \begin{bmatrix} \varepsilon_1 & J \\ J & \varepsilon_2 \end{bmatrix} \qquad \qquad \varepsilon_1 \le \varepsilon_2 \tag{2}$$

Solving the secular determinant, we have

$$\det |\mathbf{H} - \mathbf{E}\mathbf{1}| = \begin{vmatrix} \varepsilon_1 - E & J \\ J & \varepsilon_2 - E \end{vmatrix} = 0$$

$$(\varepsilon_1 - E)(\varepsilon_2 - E) - J^2 = 0$$

$$E^2 - (\varepsilon_1 + \varepsilon_2)E + \varepsilon_1\varepsilon_2 - d^2 = 0$$

(3)

The roots, which are the eigenvalues can be obtained using the quadratic formula.

$$E_{1} = \frac{\left(\varepsilon_{1} + \varepsilon_{2}\right) - \sqrt{\left(\varepsilon_{1} + \varepsilon_{2}\right)^{2} - 4\left(\varepsilon_{1}\varepsilon_{2} - J^{2}\right)}}{2} \quad \text{and} \quad E_{2} = \frac{\left(\varepsilon_{1} + \varepsilon_{2}\right) + \sqrt{\left(\varepsilon_{1} + \varepsilon_{2}\right)^{2} - 4\left(\varepsilon_{1}\varepsilon_{2} - J^{2}\right)}}{2} \quad (4)$$

With a few rearrangements in the radicand, it is straightforward to show that

$$E_{1} = \frac{(\varepsilon_{1} + \varepsilon_{2}) - \sqrt{(\varepsilon_{1} - \varepsilon_{2})^{2} + 4J^{2}}}{2} \quad \text{and} \quad E_{2} = \frac{(\varepsilon_{1} + \varepsilon_{2}) + \sqrt{(\varepsilon_{1} - \varepsilon_{2})^{2} + 4J^{2}}}{2} \quad (5)$$

The eigenstates will be linear combinations of $|1\rangle$ and $|2\rangle$. We will use $\sin\theta$ and $\cos\theta$ to ensure that these eigenstates are orthonormal.

$$|\alpha\rangle = \cos\theta |1\rangle + \sin\theta |2\rangle$$

$$|\beta\rangle = -\sin\theta |1\rangle + \cos\theta |2\rangle$$
(6)

To determine the eigenstates, we need to know θ . Collecting the coefficients of the eigenvectors $|\alpha\rangle$ and $|\beta\rangle$ to a matrix **S**.

$$\mathbf{S} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$
(7)

This matrix satisfies the matrix equation HS = SE. From here the 2×2 Hamiltonian can be diagonalize by a similarity transformation.

$$\mathbf{E} = \mathbf{S}^{-1}\mathbf{HS}$$

$$\begin{bmatrix} E_{1} & 0\\ 0 & E_{2} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \varepsilon_{1} & J\\ J & \varepsilon_{2} \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

$$\begin{bmatrix} E_{1} & 0\\ 0 & E_{2} \end{bmatrix} = \begin{bmatrix} \varepsilon_{1}\cos^{2}\theta + \varepsilon_{2}\sin^{2}\theta + 2J\cos\theta\sin\theta & J(\cos^{2}\theta - \sin^{2}\theta) + (\varepsilon_{2} - \varepsilon_{1})\cos\theta\sin\theta\\ J(\cos^{2}\theta - \sin^{2}\theta) + (\varepsilon_{2} - \varepsilon_{1})\cos\theta\sin\theta & \varepsilon_{2}\cos^{2}\theta + \varepsilon_{1}\sin^{2}\theta + 2J\cos\theta\sin\theta \end{bmatrix}$$
(8)

Equating the off diagonal elements yields

$$J(\cos^2\theta - \sin^2\theta) + (\varepsilon_2 - \varepsilon_1)\cos\theta\sin\theta = 0$$
⁽⁹⁾

Multiply equation (9) by 2 on both sides, and using the following trigonometric identities, we have

$$\cos 2x = \cos^2 x - \sin^2 x \tag{10}$$
$$\sin 2x = 2\cos x \sin x$$

$$2J\cos 2\theta + (\varepsilon_2 - \varepsilon_1)\sin 2\theta = 0$$

$$\tan 2\theta = \frac{-2J}{\varepsilon_2 - \varepsilon_1} = \frac{2J}{\varepsilon_1 - \varepsilon_2}$$

$$\theta = \frac{1}{2}\arctan\left(\frac{2J}{\varepsilon_1 - \varepsilon_2}\right)$$
(11)

Part 2: Using the two-level system to extract coupling constants in a two-state $(a_1 \leftrightarrow a_1)$ Fermi's resonance

In a typical two-state Fermi resonance, the zero-order picture is shown in the figure below. The transitions from $|1\rangle \leftarrow |0\rangle$ is allowed (green arrow) while that of $|2\rangle \leftarrow |0\rangle$ is forbidden (black arrow). Provided that there is a good matching between $|1\rangle$ and $|2\rangle$ with respect to symmetry and energy, plus the existence of a non-zero anharmonic coupling term, the two zero-order states can couple. That is they can mix to produce two new eigenstates $|\alpha\rangle$ and $|\beta\rangle$. Their transition from the ground vibrational state will be non-zero.

In order to use the two-level system, to extract the anharmonic coupling constant J. We will make the following assumptions:

- 1. The ground vibrational state $|0\rangle$ remains intact of any perturbations or coupling in the system.
- 2. The experimental absorption intensities, which are the area under the peak can be well described by the integrated absorption coefficient $A_{\hat{n}}$.
- 3. The $|1\rangle$ and $|2\rangle$ weakly couples with the rest of the zero-order states, which allows them to be isolated as a first approximation.
- 4. The effects of electronic anharmonicity is negligible.

From the above figure, it follows that the transition dipole moments for $|1\rangle \leftarrow |0\rangle$ and $|2\rangle \leftarrow |0\rangle$ are

$$\langle 0|\mathbf{\mu}|1 \rangle \neq 0$$
 and $\langle 0|\mathbf{\mu}|2 \rangle = 0$ (12)

In the coupled states $|\alpha\rangle$ and $|\beta\rangle$, their transition dipole moments are

$$\langle 0|\boldsymbol{\mu}|\boldsymbol{\alpha} \rangle = \cos\theta \langle 0|\boldsymbol{\mu}|1 \rangle + \sin\theta \langle 0|\boldsymbol{\mu}|2 \rangle = \cos\theta \langle 0|\boldsymbol{\mu}|1 \rangle$$

$$\langle 0|\boldsymbol{\mu}|\boldsymbol{\beta} \rangle = -\sin\theta \langle 0|\boldsymbol{\mu}|1 \rangle + \cos\theta \langle 0|\boldsymbol{\mu}|2 \rangle = -\sin\theta \langle 0|\boldsymbol{\mu}|1 \rangle$$

$$(13)$$

Their corresponding integrated absorption coefficients for the $|\alpha\rangle \leftarrow |0\rangle$ and $|\beta\rangle \leftarrow |0\rangle$ are

$$A_{\beta \leftarrow 0} = \left(\frac{\pi N_{A}}{3c\varepsilon_{0}}\right) v_{\beta \leftarrow 0} \left|\left\langle 0 \left| \hat{\boldsymbol{\mu}} \right| \beta \right\rangle\right|^{2}$$

$$A_{\alpha \leftarrow 0} = \left(\frac{\pi N_{A}}{3c\varepsilon_{0}}\right) v_{\alpha \leftarrow 0} \left|\left\langle 0 \left| \hat{\boldsymbol{\mu}} \right| \alpha \right\rangle\right|^{2}$$
(14)

Taking their ratio, we have

$$\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}} = \frac{\left(\frac{\pi N_{A}}{3c\varepsilon_{0}}\right) v_{\beta \leftarrow 0} \left|\left\langle 0\left|\hat{\boldsymbol{\mu}}\right|\beta\right\rangle\right|^{2}}{\left(\frac{\pi N_{A}}{3c\varepsilon_{0}}\right) v_{\alpha \leftarrow 0} \left|\left\langle 0\left|\hat{\boldsymbol{\mu}}\right|\alpha\right\rangle\right|^{2}} = \frac{v_{\beta \leftarrow 0} \left|\left\langle 0\left|\hat{\boldsymbol{\mu}}\right|\beta\right\rangle\right|^{2}}{v_{\alpha \leftarrow 0} \left|\left\langle 0\left|\hat{\boldsymbol{\mu}}\right|\alpha\right\rangle\right|^{2}} = \left(\frac{v_{\beta \leftarrow 0}}{v_{\alpha \leftarrow 0}}\right) \left(\frac{\sin^{2}\theta}{\cos^{2}\theta}\right) \left|\frac{\left\langle 0\left|\boldsymbol{\mu}\right|1\right\rangle}{\left\langle 0\left|\boldsymbol{\mu}\right|1\right\rangle}\right|^{2}} = \left(\frac{v_{\beta \leftarrow 0}}{v_{\alpha \leftarrow 0}}\right) \tan^{2}\theta$$

$$(15)$$

Recall that from our two-level system equation (11) and rearing equation (15) gives

$$\tan 2\theta = \frac{2J}{\varepsilon_1 - \varepsilon_2}$$

$$\tan^2 \theta = \left(\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}}\right) \left(\frac{\nu_{\alpha \leftarrow 0}}{\nu_{\beta \leftarrow 0}}\right)$$
(16)

10

Using the trigonometric identity $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$ we have

$$\frac{2J}{\varepsilon_1 - \varepsilon_2} = \frac{2\sqrt{\left(\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}}\right)\left(\frac{\nu_{\alpha \leftarrow 0}}{\nu_{\beta \leftarrow 0}}\right)}}{1 - \left(\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}}\right)\left(\frac{\nu_{\alpha \leftarrow 0}}{\nu_{\beta \leftarrow 0}}\right)}$$
(17)

We can simplify the expression by defining z and Q.

$$\frac{2J}{\varepsilon_1 - \varepsilon_2} = Q$$

$$Q = \frac{2z}{1 - z^2} \quad \text{and} \quad z = \sqrt{\left(\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}}\right) \left(\frac{v_{\alpha \leftarrow 0}}{v_{\beta \leftarrow 0}}\right)}$$
(18)

Also from the eigenvalues of our two-level system equation (5), the difference in transition energies is

$$\Delta E = E_2 - E_1 = v_{\beta \leftarrow 0} - v_{\alpha \leftarrow 0} = \sqrt{\left(\varepsilon_1 - \varepsilon_2\right)^2 + 4J^2}$$
(19)

Squaring both sides of equation (18) and (19) gives

$$4J^{2} = Q^{2}(\varepsilon_{1} - \varepsilon_{2})^{2}$$

$$(\Delta E)^{2} = (\varepsilon_{1} - \varepsilon_{2})^{2} + 4J^{2} \Rightarrow (\Delta E)^{2} = (\varepsilon_{1} - \varepsilon_{2})^{2} + Q^{2}(\varepsilon_{1} - \varepsilon_{2})^{2}$$

$$\therefore \varepsilon_{1} - \varepsilon_{2} = -\sqrt{\frac{(\Delta E)^{2}}{1 + Q^{2}}} = -\sqrt{\frac{(\nu_{\beta \leftarrow 0} - \nu_{\alpha \leftarrow 0})^{2}}{1 + Q^{2}}} \quad \text{and} \quad J = \frac{Q(\varepsilon_{1} - \varepsilon_{2})}{2}$$
(20)

Where the negative root was taken as we imposed $\varepsilon_1 \le \varepsilon_2$ in equation (2).

Part 3: Method Validation

To illustrate the use of the equations derived from Part 2, consider the following 2×2 Hamiltonian in the $\{|1\rangle, |2\rangle\}$ representation.

$$\mathbf{H} = \begin{bmatrix} 7 & -3\sqrt{3} \\ -3\sqrt{3} & 13 \end{bmatrix}$$
(21)

Using equation 5, its corresponding eigenvalues are

$$E_{1} = \frac{(7+13) - \sqrt{(7-13)^{2} + 4\left(-3\sqrt{3}\right)^{2}}}{2} = 4 \quad \text{and} \quad E_{2} = \frac{(7+13) + \sqrt{(7-13)^{2} + 4\left(-3\sqrt{3}\right)^{2}}}{2} = 16 \quad (22)$$

The eigenvectors can be obtained using equations (6) and (11).

$$\theta = \frac{1}{2} \arctan\left(\frac{-6\sqrt{3}}{7-13}\right) = 30^{\circ}$$

$$\cos\theta = \frac{\sqrt{3}}{2} \quad \text{and} \quad \sin\theta = \frac{1}{2}$$

$$|\alpha\rangle = \frac{\sqrt{3}}{2}|1\rangle + \frac{1}{2}|2\rangle$$

$$|\beta\rangle = -\frac{1}{2}|1\rangle + \frac{\sqrt{3}}{2}|2\rangle$$
(23)

If we set the following transition dipole moments,

$$\langle 0|\boldsymbol{\mu}|1 \rangle = 100 \quad \text{and} \quad \langle 0|\boldsymbol{\mu}|2 \rangle = 0$$

$$\langle 0|\boldsymbol{\mu}|\alpha \rangle = \cos\theta \langle 0|\boldsymbol{\mu}|1 \rangle = 50\sqrt{3} \quad \text{and} \quad \langle 0|\boldsymbol{\mu}|\beta \rangle = -\sin\theta \langle 0|\boldsymbol{\mu}|1 \rangle = -50$$

$$(24)$$

Then, their corresponding integrated absorption coefficients for $|\alpha\rangle \leftarrow |0\rangle$ and $|\beta\rangle \leftarrow |0\rangle$ are

$$\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}} = \frac{v_{\beta \leftarrow 0} \left| \langle 0 | \hat{\boldsymbol{\mu}} | \beta \rangle \right|^2}{v_{\alpha \leftarrow 0} \left| \langle 0 | \hat{\boldsymbol{\mu}} | \alpha \rangle \right|^2} = \left(\frac{16}{4} \right) \left(\frac{-50}{50\sqrt{3}} \right)^2 = \frac{4}{3}$$
(25)

Now to check for the consistency of our equations in part 2, let us supposed that our observed peaks for $|\alpha\rangle \leftarrow |0\rangle$ and $|\beta\rangle \leftarrow |0\rangle$ are 4 and 16 units respectively. Their intensity ratio is $\frac{A_{\beta\leftarrow0}}{A_{\alpha\leftarrow0}} = \frac{4}{3}$. Our goal is to get to extract J and $\varepsilon_1 - \varepsilon_2$.

From equation (18), we know that

$$z = \sqrt{\left(\frac{A_{\beta \leftarrow 0}}{A_{\alpha \leftarrow 0}}\right) \left(\frac{v_{\alpha \leftarrow 0}}{v_{\beta \leftarrow 0}}\right)} = \sqrt{\left(\frac{4}{3}\right) \left(\frac{4}{16}\right)} = \frac{1}{\sqrt{3}}$$

$$Q = \frac{2z}{1 - z^2} = \frac{\frac{2}{\sqrt{3}}}{1 - \left(\frac{1}{\sqrt{3}}\right)^2} = \sqrt{3}$$
(26)

Then by equation (19)

$$\varepsilon_{1} - \varepsilon_{2} = -\sqrt{\frac{\left(\nu_{\beta \leftarrow 0} - \nu_{\alpha \leftarrow 0}\right)^{2}}{1 + Q^{2}}} = -\sqrt{\frac{\left(16 - 4\right)^{2}}{1 + 3}} = -6$$

$$J = \frac{Q(\varepsilon_{1} - \varepsilon_{2})}{2} = \frac{\sqrt{3}(-6)}{2} = -3\sqrt{3}$$
(27)

Hence, our equations (18) and (19) are mathematically consistent with the Hamiltonian in equation (21).

H. Determination of coupling constants from an experimentally observable $(E \leftrightarrow E)$ Fermi resonance.

In section G, we used a simple two-level system to derive expressions for difference in zero-order energy $(\varepsilon_1 - \varepsilon_2)$ and anharmonic coupling constant (J). In the main manuscript, Fermi resonance between $(E \leftrightarrow E)$ were also observed. In this section, we will attempt to provide the working equations to extract $\varepsilon_1 - \varepsilon_2$ and J.

Part 1: The form of the Hamiltonian matrix

We will begin with the following 4×4 Hamiltonian matrix in the $\{|1\rangle, |2\rangle, |3\rangle, |4\rangle$ representation.

$$\mathbf{H} = \begin{bmatrix} \varepsilon_1 & 0 & w & x \\ 0 & \varepsilon_1 & y & z \\ w & y & \varepsilon_2 & 0 \\ x & z & 0 & \varepsilon_2 \end{bmatrix}$$
(28)

Where the zero elements are a consequence of ensuring that the basis for the degenerate diagonal elements is orthogonal. The secular determinant can be written as

$$\det |\mathbf{H} - \mathbf{E}\mathbf{1}| = \begin{vmatrix} \varepsilon_1 - E & 0 & w & x \\ 0 & \varepsilon_1 - E & y & z \\ w & y & \varepsilon_2 - E & 0 \\ x & z & 0 & \varepsilon_2 - E \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{C}^{\mathsf{T}} \\ \mathbf{C} & \mathbf{B} \end{vmatrix} = 0$$
(29)

Where $\mathbf{A}, \mathbf{C}, \mathbf{C}^{\mathrm{T}}$, and \mathbf{B} block matrices defined as

$$A = \begin{bmatrix} \varepsilon_1 - E & 0 \\ 0 & \varepsilon_1 - E \end{bmatrix} \qquad B = \begin{bmatrix} \varepsilon_2 - E & 0 \\ 0 & \varepsilon_2 - E \end{bmatrix} \qquad C = \begin{bmatrix} w & y \\ x & z \end{bmatrix} \qquad C^T = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
(30)

Since **B** is an invertible matrix, then

$$\det |\mathbf{H} - \mathbf{E}\mathbf{1}| = \begin{vmatrix} \mathbf{A} & \mathbf{C}^{\mathrm{T}} \\ \mathbf{C} & \mathbf{B} \end{vmatrix} = \det (\mathbf{B}) \det (\mathbf{A} - \mathbf{C}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{C}) = 0$$
(31)

$$\mathbf{A} - \mathbf{C}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{C} = \begin{bmatrix} \varepsilon_{1} - E & 0 \\ 0 & \varepsilon_{1} - E \end{bmatrix} - \begin{bmatrix} w & x \\ y & z \end{bmatrix} \begin{bmatrix} \frac{1}{\varepsilon_{2} - E} & 0 \\ 0 & \frac{1}{\varepsilon_{2} - E} \end{bmatrix} \begin{bmatrix} w & y \\ x & z \end{bmatrix}$$

$$= \begin{bmatrix} (\varepsilon_{1} - E) - \frac{w^{2} + x^{2}}{\varepsilon_{2} - E} & \frac{-(wy + xz)}{\varepsilon_{2} - E} \\ \frac{-(wy + xz)}{\varepsilon_{2} - E} & (\varepsilon_{1} - E) - \frac{y^{2} + z^{2}}{\varepsilon_{2} - E} \end{bmatrix}$$
(32)

So the determinant is

$$\det |\mathbf{H} - \mathbf{E}\mathbf{1}| = \det (\mathbf{B})\det (\mathbf{A} - \mathbf{C}^{\mathsf{T}}\mathbf{B}^{-1}\mathbf{C})$$

$$= (\varepsilon_2 - E)^2 \left\{ \left[(\varepsilon_1 - E) - \frac{w^2 + x^2}{\varepsilon_2 - E} \right] \left[(\varepsilon_1 - E) - \frac{y^2 + z^2}{\varepsilon_2 - E} \right] - \left[\frac{wy + xz}{\varepsilon_2 - E} \right]^2 \right\}$$

$$= \left[(\varepsilon_1 - E) (\varepsilon_2 - E) - (w^2 + x^2) \right] \left[(\varepsilon_1 - E) (\varepsilon_2 - E) - (y^2 + z^2) \right] - (wy + xz)^2 = 0$$
(33)

This produces a characteristic polynomial of degree 4. To obtain two distinct eigenvalues each having a multiplicity of two, the easiest way is to vanish the last term.

$$wy + xz = 0 \tag{34}$$

There are many possible solutions for this. However, the coupling experienced by the representation $|\phi_1\rangle$ and $|\phi_2\rangle$ with $|\phi_3\rangle$ and $|\phi_4\rangle$ must be the same. Thus

$$|w| = |z| \quad \text{and} \quad |y| = |x| \tag{35}$$

By imposing the condition in equations (34) and (35), the secular determinant takes the following form

$$\det |\mathbf{H} - \mathbf{E}\mathbf{1}| = \left[(\varepsilon_1 - E)(\varepsilon_2 - E) - (w^2 + x^2) \right] \left[(\varepsilon_1 - E)(\varepsilon_2 - E) - (w^2 + x^2) \right] = 0$$
(36)

Now, this looks very familiar. It is just the square of the characteristic polynomial for a two-level system with an off-diagonal element of $J = \sqrt{w^2 + x^2}$. Its eigenvalues will be given by equation (5). From here, it follows that the Hamiltonian can be recast in the following form

$$\mathbf{H} = \begin{bmatrix} \varepsilon_1 & J & 0 & 0 \\ J & \varepsilon_2 & 0 & 0 \\ 0 & 0 & \varepsilon_1 & J \\ 0 & 0 & J & \varepsilon_2 \end{bmatrix}$$
(37)

From here expressions for $\varepsilon_1 - \varepsilon_2$ and J can be determined using the derived relationships in equations (18) and (20).

Part 2: An illustrative example

Consider the following 4×4 Hamiltonian.

$$\mathbf{H} = \begin{bmatrix} 7 & -3\sqrt{3} & 0 & 0 \\ -3\sqrt{3} & 13 & 0 & 0 \\ 0 & 0 & 7 & -3\sqrt{3} \\ 0 & 0 & -3\sqrt{3} & 13 \end{bmatrix}$$
(38)

Its corresponding secular determinant is

$$\det |\mathbf{H} - \mathbf{E}\mathbf{1}| = \begin{vmatrix} 7 - E & -3\sqrt{3} & 0 & 0 \\ -3\sqrt{3} & 13 - E & 0 & 0 \\ 0 & 0 & 7 - E & -3\sqrt{3} \\ 0 & 0 & -3\sqrt{3} & 13 - E \end{vmatrix} = 0$$
(39)

Using equation (5) the eigenvalues are 4 and 16. Each of these roots have a multiplicity of two. The eigenvectors take the following form.

$$\begin{aligned} |\alpha\rangle &= \frac{\sqrt{3}}{2}|1\rangle + \frac{1}{2}|2\rangle \\ |\beta\rangle &= -\frac{1}{2}|1\rangle + \frac{\sqrt{3}}{2}|2\rangle \\ |\gamma\rangle &= \frac{\sqrt{3}}{2}|3\rangle + \frac{1}{2}|4\rangle \\ |\eta\rangle &= -\frac{1}{2}|3\rangle + \frac{\sqrt{3}}{2}|4\rangle \end{aligned}$$
(40)

These eigenvectors can be grouped into two degenerate pairs: $(|\alpha\rangle, |\gamma\rangle)$ and $(|\beta\rangle, |\eta\rangle)$. Furthermore,

$$\begin{aligned}
\nu_{\alpha \leftarrow 0} &= \nu_{\gamma \leftarrow 0} = 4 \\
\nu_{\beta \leftarrow 0} &= \nu_{\eta \leftarrow 0} = 16
\end{aligned} \tag{41}$$

If we set the transition dipole moments as follows:

$$\langle 0|\boldsymbol{\mu}|1 \rangle = \langle 0|\boldsymbol{\mu}|3 \rangle = 100 \quad \text{and} \quad \langle 0|\boldsymbol{\mu}|2 \rangle = \langle 0|\boldsymbol{\mu}|4 \rangle = 0$$

$$\langle 0|\boldsymbol{\mu}|\alpha \rangle = \langle 0|\boldsymbol{\mu}|\gamma \rangle = 50\sqrt{3} \quad \text{and} \quad \langle 0|\boldsymbol{\mu}|\beta \rangle = \langle 0|\boldsymbol{\mu}|\eta \rangle = -50$$

$$(42)$$

Then the integrated absorption coefficients for the 4 cm⁻¹ and 16 cm⁻¹ transitions are

$$\frac{A_{16\leftarrow0}}{A_{4\leftarrow0}} = \frac{\nu_{\beta\leftarrow0} \left| \left\langle 0 \left| \hat{\mu} \right| \beta \right\rangle \right|^2 + \nu_{\eta\leftarrow0} \left| \left\langle 0 \left| \hat{\mu} \right| \eta \right\rangle \right|^2}{\nu_{\alpha\leftarrow0} \left| \left\langle 0 \left| \hat{\mu} \right| \alpha \right\rangle \right|^2 + \nu_{\gamma\leftarrow0} \left| \left\langle 0 \left| \hat{\mu} \right| \gamma \right\rangle \right|^2} = \left(\frac{16}{4}\right) \left(\frac{-50}{50\sqrt{3}}\right)^2 = \frac{4}{3}$$
(43)

Thus, if we supposed to have a e-e type Fermi resonance, which leads to two peak positions at 4 and 16 units; their intensity ratio is $\frac{4}{3}$. Then using equation (27), we can get the difference in zero-order energies and coupling constant J.