Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Information Graphene-like Mg₃N₂ Monolayer: High Stability, Desirable Direct Band Gap and Promising Carrier Mobility

Peng-Fei Liu,^{a,c} Liujiang Zhou,*,^b Thomas Frauenheim,^b Li-Ming Wu*,^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

^bBremen Center for Computational Materials Science, University of Bremen, Am Falturm 1, 28359 Bremen, Germany

^c University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China

SUPPORTING INFORMATION

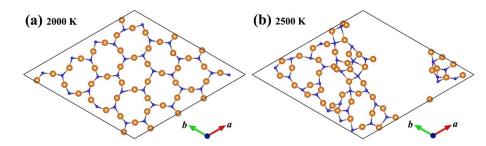


Figure S1. Top view of a snapshot of monolayer $g-Mg_3N_2$ of the *ab-initio* molecular dynamics simulation at (a) 2000 K and (b) 2500 K. $4 \times 4 \times 1$ supercell is used and labeled by black solid line.

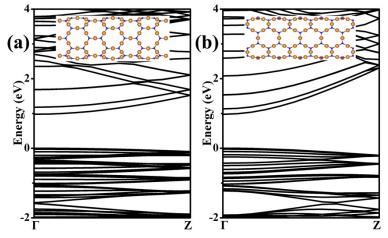


Figure S2. Band structure of armchair (6,6) and zigzag (8,4) tubes.

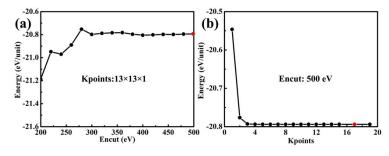


Figure S3. The convergence tests for (a) K-point grids and (b) cutoff energy. Red dots are the parameters we have used in the calculations.

Table S1. The calculated energies of 2D g-Mg₃N₂, isolated Mg and isolated N atoms, respectively.

System	g-Mg ₃ N ₂	isolated Mg atom	isolated N atom
Energy	-20.764	-0.075	-3.124
(eV)			