Supporting Information: A Systematic Study of ²⁵Mg NMR in Paramagnetic Transition Metal Oxides: Applications to Mg-ion Battery Materials

Jeongjae Lee¹, Ieuan D. Seymour¹, Andrew J. Pell², Siân E. Dutton³, and Clare P. Grey¹

¹Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom ²Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, SE-106 91 Stockholm, Sweden ³Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

S1 DFT Population Analysis Data

	d_{xy}	d_{yz}	d_{zx}	$d_{x^2-y^2}$	d_z^2
$\rm MgV_2O_4$	0.625	0.625	0.625	0.056	0.056
$MgMn_2O_4$	0.934	0.934	0.919	0.143	0.855

Table S1: Mulliken spin population analysis of transition metal d orbitals in selected spinel compounds.

S2 Pulse Sequences

(a) Rotor synchronized spin echo, with τ_r being the rotor period.

(b) Rotor Assisted Population Transfer (RAPT), where the saturation frequency is given as $\nu = 1/(2\tau_1)$.

(c) Magic Angle Turning (MAT). Recoupling time which equals a full rotor period τ_r was used to minimize loss in signal due to paramagnetic relaxation. Pulses at $2/6\tau_r$ and $4/6\tau_r$ were fixed and the timings of the other pulses are shifted according to echo or anti-echo types as shown.

Figure S1: Illustrations of pulse sequences used in this study.

All spin echo experiments, including those included in RAPT experiments, were performed with rotor-synchronized delays of 71.42 μ s (14 kHz MAS) and 0.1 s recycle delay. Lengths of RAPT pulses were calculated from the expression $1/2\nu_m - \tau_1$, where ν_m is the RAPT modulation frequency and $\tau_1 = 200$ ns is a short delay between the two pulses, allowing the transmitter to stabilize. 60 RAPT pulses (n = 30) were applied to saturate the satellite levels.

S3 DFS enhancement

Figure S2: ²⁵Mg NMR spectra of Mg_6MnO_8 , recorded with rotor-synchronized Hahn echo and Double Frequency Sweep (DFS) pulse sequences. Signal-to-noise enhancement of around 1.5 is observed for the isotropic shift. A 36 kHz-strength DFS sweep pulse starting from an offset of 1000 kHz and ending at 100 kHz was applied for 2040 μ s. 51200 transients were acquired in each case with recycle delays of 0.01 s.

S4 Euler Angle Conventions

Rotation matrix for converting column vectors in ZYZ convention, utilizing positive (counterclockwise) rotations:

$$\begin{bmatrix} x'\\ y'\\ z' \end{bmatrix} = \begin{bmatrix} \cos\alpha \cos\beta \cos\gamma - \sin\alpha \sin\gamma & \sin\alpha \cos\beta \cos\gamma + \cos\alpha \sin\gamma & -\sin\beta \cos\gamma \\ -\cos\alpha \cos\beta \sin\gamma - \sin\alpha \cos\gamma & -\sin\alpha \cos\beta \sin\gamma + \cos\alpha \cos\gamma & \sin\beta \sin\gamma \\ \cos\alpha \sin\beta & \sin\alpha \sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}$$

S5 XRD Characterization Data

 R_{exp} refers to the expected R-factor and R_{wp} refers to the weighted R-factor against the observed intensity.

Figure S3: X-ray diffraction pattern for Mg_6MnO_8 . Collected data (red), modelled data (black line) and the difference (lower panel) are shown. The position of allowed reflections are indicated by the tick marks. $Mg_6MnO_8 \ 100\% \ Fm\bar{3}m$ space group

a / Å	8.38008(6)
Ν	/Ig1 (24d)
x	0
y, z	0.25
occ	1
B_{iso}	1
]	Mn1 (4a)
x,y,z	0
occ	1
B_{iso}	1
	O1 (8c)
x,y,z	0.25
occ	1
B_{iso}	1
	O2 (24e)
x	0.2293(3)
y, z	0
occ	1
B_{iso}	1
R_{exp}	2.41
R_{wp}	14.21
Goodness-of-fi	t = 34.75

Table S2: Structural parameters for ${\rm Mg}_{6}{\rm MnO}_{8}$ as determined from room temperature X-ray powder diffraction.

Figure S4: X-ray diffraction pattern for $MgCr_2O_4$. Collected data (red), modelled data (black line) and the difference (lower panel) are shown. The position of allowed reflections are indicated by the tick marks. $MgCr_2O_4$. $I00 \% = Fd\bar{3}m$ space group

$MgO1_2O_4$ 100 /0	<i>I usin</i> space group		
a / Å	8.33242(9)		
Mg1 (8a)			
x,y,z	0.375		
occ	1		
B_{iso}	0.39		
Cr1 (16d)			
x,y,z	0		
occ	1		
B_{iso}	0.27		
01	(32e)		
x,y,z	0.2423(2)		
occ	1		
B_{iso}	0.38		
R_{exp}	2.18		
R_{wp}	7.70		
Goodness-of-fit	19.93		

Table S3: Structural parameters for ${\rm MgCr}_2{\rm O}_4$ as determined from room temperature X-ray powder diffraction.

Figure S5: X-ray diffraction pattern for MgV_2O_4 . Collected data (red), modelled data (black line) and the difference (lower panel) are shown. The position of allowed reflections are indicated by the tick marks. 15 % of V_2O_3 was found in the sample.

${\rm MgV_2O_4} \ 84.6(4)\%$	$Fd\bar{3}m$ space group			
<i>a</i> / Å	8.41719(8)			
Mg1 (8a)				
x,y,z	0.375			
occ	1			
B_{iso}	1.0			
V1	(16d)			
x,y,z	0			
occ	1			
B_{iso}	1.0			
01	(32e)			
x,y,z	0.2426(1)			
occ	1			
B_{iso}	1.0			
R_{exp}	2.37			
R_{wp}	10.63			
Goodness-of-fit	20.17			

Table S4: Structural parameters for ${\rm MgV}_2{\rm O}_4$ as determined from room temperature X-ray powder diffraction.

Figure S6: X-ray diffraction pattern for $MgMn_2O_4$. Collected data (red), modelled data (black line) and the difference (lower panel) are shown. The position of allowed reflections are indicated by the tick marks. 7.9 % of Mg_6MnO_8 phase was detected.

${\rm MgMn_2O_4}~92.1(3)\%$	I41/amd space group			
<i>a /</i> Å	5.7274(2)			
c / Å	9.2660(5)			
Mg1 & Mn1 (4a)				
x 0				
y	0.25			
z	0.375			
occ	0.91(1) & 0.09(1)			
B_{iso}	0.5			
Mn1 (8d)				
x,y,z	0			
occ	1			
B_{iso}	0.5			
O1 (16h)				
x	0			
y	0.51			
z	0.2417(3)			
occ	1			
B_{iso}	0.5			
R_{exp}	3.28			
R_{wp}	5.43			
Goodness-of-fit	2.74			

Table S5: Structural parameters for $\rm MgMn_2O_4$ as determined from room temperature X-ray powder diffraction.

S6 Magnetic Characterization Data

 \mathbb{R}^2 refers to the coefficient of determination in the linear regression.

	μ_{eff} (SO) / μ_B	μ_{eff} (expt) / μ_B	Θ / K	J_1 / K	$T_N \ / \ {\rm K}$	Fitted range / K
Mg_6MnO_8	3.87	3.99 ± 0.01	-21.9 ± 0.4	-0.73 ± 0.01	5	35 - 301
$MgCr_2O_4$	3.87	4.25 ± 0.03	-456.7 ± 3.4	-30.4 ± 0.2	13	100 - 301
$MgMn_2O_4$	4.90	5.93 ± 0.06	-452.5 ± 5.4	—	_	200 - 301
$(Mg_{0.81}^{2+}Mn_{0.19}^{2+})Mn_2^{3+}O_4$	5.00					
$(Mg_{0.91}^{2+}Mn_{0.09}^{2+})Mn_2^{3+}O_4$	4.95					

Table S6: Magnetic characterization data of compounds studied. μ_{eff} refers to the effective magnetic moment in Bohr magneton (μ_B) per TM ion, Θ refers to the Weiss temperature, J_1 refers to the nearest neighbor exchange coupling constant, and T_N refers to the Neel temperature. Theoretical spin-only values for the MgMn₂O₄ compositions determined by phase fractions and occupancy refinements are also shown.

Figure S7: Inverse magnetic susceptibility per mol Mn, $1/\chi$, as a function of temperature for Mg₆MnO₈.

Figure S8: Inverse magnetic susceptibility per mol Cr, $1/\chi$, as a function of temperature for MgCr₂O₄.

Figure S9: Inverse magnetic susceptibility per mol Mn, $1/\chi$, as a function of temperature for MgMn₂O₄.