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Fig. S1. Cross-section SEM images of (a) pristine and (b) Ti-doped hematite films.

Fig. S2. The photocurrents of Ti doped hematite after annealing in nitrogen gas at different 

temperature measured under AM 1.5 solar simulator illumination.
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Fig. S3. The photocurrents at 1.23 V vs. RHE of Ti doped hematite versus nominal Ti doping 

concentration after annealing in nitrogen gas measured under AM 1.5 solar simulator 

illumination.
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Fig. S4. Ti 2p core-level X-ray photoelectron spectroscopy (XPS) spectra of Ti-doped hematite 



Fig. S5. Fe 2p core-level X-ray photoelectron spectroscopy (XPS) spectra of pristine and Ti-

doped hematite before and after N2 treatment.

Fe 2p core-level X-ray photoelectron spectroscopy (XPS) spectra reveal two strong peaks 

centered at binding energies of 711.4 eV and 725.0 eV, which are attributed to Fe3+ following 

previous reports on hematite.1-3 The satellite peak at about 720.0 eV also indicates the presence 

of Fe3+ species.4 Previous works showed that the creation of Fe2+ indicates the presence of 

oxygen vacancy.1 However, no obvios changes were found between the samples before and after 

nitrogen treatment for both pristine and Ti-doped hematite. This is mainly attributed to the less 

amout of oxygen vacancies generated using this method, which is supported by the Mott-

Schottky results that carrier density is not too high. The carrier density is only 5.9×1019 cm-3 for 

the nitrogen treated pristine hematite. In the pristine hematite, the carrier is contributed by the 

oxygen vacancy, 2 electrons generated by 1 oxygen vacancy. Thus, the oxygen vacancy density 

in pristine hematite is about 3×1019 cm-3. For hematite, the density is 5.26 g cm-3, corresponding 

to a density of 1×1023 cm-3 in the atom. Hence the oxygen vacancy density is about 0.01% in 



hematite, which is still below the XPS detection limit (about 0.1% for our equipment). Therefore, 

no obvious changes were observed in Fe 2p spectra.

Fig. S6. The photocurrents of pristine and Ti doped hematite at 0.6 V vs. Ag/AgCl with multiple 

treatments as follows. 

Anneal Air represents the synthesized films calcined in air 700 °C for 20 min. 

Anneal Air Anneal N2 represents the synthesized films calcined in air 700 for 20 min, then 

reannealed in N2 at 600 °C for 2h. 

Anneal Air Anneal N2 Anneal Air represents the synthesized films calcined in air 700 for 20 

min, then reannealed in N2 at 600 °C for 2h, then reannealed in air at 600 °C for 2h. 

Anneal Air Anneal N2 Anneal Air Anneal N2 represents the synthesized films calcined in air 

700 for 20 min, then reannealed in N2 at 600 °C for 2h, then reannealed in air at 600 °C for 2h, 

then reannealed in N2 at 600 °C for 2h.



Calculation of Jabs 

Jabs is the photocurrent density determined by the photon absorption that will be used to generate 

photocurrent, which can be calculated by:
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where λ (nm) is the wavelength, Pλ (μW∙cm-2) the light intensity at λ from AG 1.5 data, ηabs is the 

light absorption efficiency of the hematite thin film. From Equation S1 the calculated Jabs is 

about 6.85 mA∙cm-2 for the Ti-doped hematite in this study according to the AM 1.5 data and 

light absorption efficiency (Fig. 4 in the main text). 
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