Supplementary Information for

Electrochemistry of Fe^{3+/2+} at Highly Oriented Pyrolytic Graphite (HOPG) Electrodes: Kinetics, Identification of Major Electroactive Sites and Time Effects on the Response

Guohui Zhang, Sze-yin Tan, ‡ Anisha N. Patel, § and Patrick R. Unwin*

Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom

‡ Present address: School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.

§ Present address: Interfaces, Traitements, Organisation et Dynamique des Syste`mes Laboratory, Sorbonne Paris Cite´, Paris Diderot University, CNRS-UMR 7086, 15 rue J. A. Baif, 75013 Paris, France.

* To whom correspondence should be addressed. Email: <u>p.r.unwin@warwick.ac.uk</u>.

Contents

S1 | Cyclic Voltammograms for the Reduction of 0.25 mM Fe(ClO₄)₃ in 0.1 M HClO₄

S2 Simulation of the CVs for the Reduction of Fe^{3+} on AM HOPG	Page S3						
S3 Cyclic Voltammograms for the Reduction of 0.25 mM Fe(ClO ₄) ₃ in 1 M HClO ₄							
	Page S7						
S4 Calculation of Standard Heterogeneous Rate Constant from SECCM CV	Page S8						
S5 SECCM Electroactivity Mapping of AM HOPG	Page S9						
References	Page S10						

Page S2

S1 | Cyclic Voltammograms for the Reduction of 0.25 mM Fe(ClO₄)₃ in 0.1 M HClO₄

Cyclic voltammetry (CV) measurements were carried out using a low concentration redox species (0.25 mM Fe(ClO₄)₃) in 0.1 M HClO₄ electrolyte. As shown in Figure S1, the behaviour is comparable to that obtained for 5 mM Fe³⁺ (see main text).

Figure S1. (a) CVs for the reduction of $Fe(ClO_4)_3$ (0.25 mM in 0.1 M HClO_4 solution) recorded at scan rates of 0.1(smallest current), 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (biggest current) V s⁻¹. (b) Peak-to-peak separation for the CVs shown in (a) plotted against scan rates.

S2 | Simulation of the CVs for the Reduction of Fe³⁺ on AM HOPG

The finite element method was employed in COMSOL Multiphysics 5.1 (COMSOL AB, Sweden) to simulate the electrochemistry response for the reduction of Fe^{3+} at the HOPG samples. The 2-D axisymmetric geometry employed for the droplet-cell configuration was similar to previously reported (Figure S2),¹ where the following diffusion equation was solved:

$$\frac{\partial c_i}{\partial t} = D_i \left(\frac{\partial^2 c_i}{\partial r^2} + \frac{1}{r} \frac{\partial c_i}{\partial r} + \frac{\partial^2 c_i}{\partial z^2} \right) \qquad (\text{eq. 1})$$

where c_i (mol dm⁻³) and D_i (cm² s⁻¹) are the concentration and diffusion coefficient of species i (Fe³⁺ or Fe²⁺). D was assumed to be 4.08×10^{-6} cm² s⁻¹ and 5.51×10^{-6} cm² s⁻¹ for Fe³⁺ and Fe²⁺.²

Figure S2. 2-D simulations domain for the droplet-cell configuration (not to scale).

The droplet was modelled as hemi-oblate spheroid where the height, *h* of the droplet is determined from the known volume, *V*, of solution used and the measured area, $A = \pi a^2$, of the droplet base determined from optical microscope measurements (allowed to vary by ± 10 % in the modelling) and the peak current magnitudes measured during voltammetry. Typically, 75,000 triangular mesh elements were used in each simulation with the greatest density at the flux boundary.

Butler-Volmer kinetics was used to describe the potential-dependence of ET at the electrode/electrolyte interface.

$$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$$
 (eq. 2)
 k_{or}

where k_{red} and k_{ox} are the reduction and oxidation rate constants given by:

$$k_{red} = k_0 e^{(-\alpha f \eta)} \qquad (eq. 3)$$

$$k_{ox} = k_0 \mathrm{e}^{[(1-\alpha)f\eta]} \qquad (\mathrm{eq.}\ 4)$$

where α and k_0 are the transfer coefficient (assumed to be 0.5) and standard heterogeneous rate constant, respectively. $f = \frac{F}{RT}$ is a collection of constants where F is the Faraday constant, R is the gas constant, and T is the absolute temperature (298 K). $\eta = E(t) - E^{0'} - IR_{\Omega}$, is the overpotential; E(t) is the potential applied to the electrode at time, t and $E^{0'}$ is the formal potential of the redox couple. I is current and R_{Ω} is the uncompensated resistance.

Note that the 2D model described herein gives a very similar result to an equivalent 1D model. Thus, most of the kinetic analysis simulations presented are from 1D simulations for computational efficiency.

The voltammogram taken at a scan rate, v of 0.1 V s⁻¹ was first analysed to determine *A* (fitting of forward peak currents, I_p) and k_0 (fitting of the peak-to-peak separation, ΔE_p). Under slow v conditions, ohmic drop effects were negligible so as not to be considered, as shown in Figure S3a. Next, voltammograms recorded at v = 10 V s⁻¹ were analysed. Here, both k_0 and ohmic drop, IR_{Ω} may contribute to changes in ΔE_p and can be used to determine R_{Ω} as k_0 is already estimated. As seen from Figure S3b, different R_{Ω} values (0, 50 and 100 Ω) were used in the model to demonstrate the significant ohmic drop effect, based on which a reasonable value of 30 Ω (for AM grade) or 28 Ω (for SPI-3 grade) was adopted for simulations for CVs at fast scan rates (0.5, 1, 5, 7 and 10 V s⁻¹). A range of v values were analysed to confirm the reliability of the k_0 value found, as summarised in Table S1 for both AM and SPI-3 grade HOPG.

Figure S3. Simulations for the reduction of 5 mM Fe³⁺ in 0.1 M HClO₄ solution, at scan rates of (a) 0.1, (b) 1, 5 and 10 V s⁻¹, with a solution resistance of 0, 50 and 100 Ω considered.

	AM				SPI-3			
(T , -1)								
$v (V s^{-1})$	Area	1 (-1)			Area	1 (-1)		
	(cm^2)	$k_0 (\text{cm s}^{-1})$	$R_{\Omega}(\Omega)$	Ψ	(cm^2)	$k_0 (\text{cm s}^{-1})$	$R_{\Omega}(\Omega)$	Ψ
	()				()			
0.1	0.18	0.00005	0	99.0	0.178	0.00005	0	99.0
0.5	0.185	0.00005	30	99.4	0.178	0.00005	28	99.0
	0.105	0.0000 .	20	0.0.4	0.150	0.0000 .	•	00 -
1	0.185	0.00005	30	99.4	0.178	0.00005	28	98.5
5	0 187	0.00005	30	99-1	0 178	0.00005	28	97 9
5	0.107	0.00005	50	<i>уу</i> .1	0.170	0.00005	20	51.5
7	0.19	0.00005	30	98.9	0.178	0.00005	28	97.6
10	0.195	0.00005	30	98.8	0.180	0.00005	28	97.4

Table S1. Simulation parameters for the $Fe^{3+/2+}$ process at AM and SPI-3 grade HOPG samples. Simulated voltammograms are shown in Figure 4 of main text.

The least squares correlation, Ψ , between experimental and simulated data is given by the following:

$$\Psi = \left(1 - \sqrt{\frac{\sum (x_{\exp} - x_{\sin})^2}{\sum x_{\exp}^2}}\right) * 100 \quad (eq. 5)$$

where x_{exp} and x_{sim} are the experimental and simulated functions.

S3 | Cyclic Voltammograms for the Reduction of 0.25 mM Fe(ClO₄)₃ in 1 M HClO₄

Given that electrowetting would occur during the electrochemical transition of $Fe^{3+/2+}$ in HClO₄ solution,³ an O-ring was used to confine the droplet contact with HOPG surface and CV measurements were done. As shown in Figure S4, a slightly larger peak-to-peak separation values were obtained on the CVs compared with those observed for a bare droplet, but the results are broadly similar.

Figure S4. (a) CVs for the reduction of $Fe(ClO_4)_3$ (0.25 mM in 1 M HClO_4 solution) recorded at scan rates of 0.1 (smallest current), 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (biggest current) V s⁻¹, with an O-ring (radius 3.1 mm) used to confine the working electrode area. (b) Peak-to-peak separation for the CVs shown in (a) plotted against scan rate.

S4 | Calculation of Standard Heterogeneous Rate Constant from SECCM CV

The standard electron transfer rate constant k_0 for Fe^{2+/3+} can be estimated by considering the half-wave potential and the mass transport rate in the SECCM configuration.⁴ The mass transport rate constant (k_T) is dependent on the limiting current (I_{lim}) (eq.6):

$$I_{lim} = nFAk_T C \qquad (eq.6)$$

where *n* is number of electrons transferred, *F* is the Faraday constant (96485 C mol⁻¹), *A* is the area of the working electrode (pipet diameter 350 nm) and *C* is the bulk concentration of reactant (Fe²⁺), which is 2 mM. The limiting current was found to be 31 pA (see the CV in Figure 9a), leading to $k_{\rm T} = 0.168$ cm s⁻¹.

In a steady-state reaction process, the net flux of reactant species towards the electrode is balanced by the reaction rate at the electrode surface. Thus, the product of the mass transport rate constant and the concentration difference between the bulk (*C*) and vicinity of the electrode surface (C_S) equals the product of the (potential-dependent) reaction rate constant (k') and C_S as shown in eq.7.

$$k_T(C - C_S) = k'C_S \qquad (eq.7)$$

For an irreversible electron transfer process, the k' can be defined as:

$$k' = k_0 e^{[\alpha F(E - E^{0'})/RT]}$$
 (eq.8)

where k_0 is the ET rate constant, α is the transfer coefficient (=0.5), *E* is the potential applied, $E^{0'}$ is the formal potential of Fe^{2+/3+} (0.85 V vs Pd/H₂)⁴, *R* is the gas constant (8.314 J K⁻¹ mol⁻¹) and *T* is temperature (298 K). At the half-wave potential, *C*_s can be regarded as half of *C*. Given the half-wave potential $E_{1/2}$ =1.247 V (vs Pd/H₂) obtained from the CV shown in Figure 9 of the main text, k_0 was estimated to be 7.4×10⁻⁵ cm s⁻¹.

S5 | SECCM Electroactivity Mapping of AM HOPG

Ion conductance current and AC current were recorded simultaneously with the SECCM electroactivity map of HOPG (Figure 9 in the main text). As shown in Figure S5, the DC ion current is reasonably stable across the area probed, although there are some variations, which could be due to electrowetting. The AC current was relatively uniform, indicative of a stable feedback control during SECCM imaging. There is occasional slight increase in the area of step edges.

Figure S5. (a) Ion conductance current and (b) AC component maps for SECCM electroactivity imaging of an area of $10 \,\mu m \times 10 \,\mu m$ on a freshly cleaved AM HOPG surface.

References

- 1. G. Zhang, A. S. Cuharuc, A. G. Güell and P. R. Unwin, *Phys. Chem. Chem. Phys.*, 2015, **17**, 11827-11838.
- 2. R. J. Taylor and A. A. Humffray, J. Electroanal. Chem., 1973, 42, 347-354.
- 3. G. Zhang, M. Walker and P. R. Unwin, *Langmuir*, 2016, **32**, 7476-7484.
- 4. B. D. B. Aaronson, C.-H. Chen, H. Li, M. T. M. Koper, S. C. S. Lai and P. R. Unwin, *J. Am. Chem. Soc.*, 2013, **135**, 3873-3880.