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Fig. S1 Beam current of O+ and O2
+ beams as a function of incidence energy. 
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Fig. S2 Mass resolution setting for the quadrupole mass spectrometer. Collision-induced 

dissociation of H2O+ on Au surfaces produces strong signals of scattered ions at 17 amu (OH+) 

and 16 amu (O+). The resolution is set to be less than 0.5 amu to prevent signal interference 

between adjacent mass numbers, which is verified by the zero signal present at 16.5 amu. 
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Fig. S3 Surface sputtering products (positive ions). Energy distributions of: (a) O+, (b) OH+ and 

(c) H+ from O+
 bombardment of Pt exposed to 1×10-7 Torr NH3 at various O+ incidence energies, 

as indicated. 
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Fig. S4 Surface temperature dependence of the HNO¯ signal. Energy distributions for HNO− 

from O+
 ion-scattering experiments on Pt exposed to 1×10-7 Torr NH3 at E0 = 67 eV, as a 

function of surface temperature from 420 to 310K. HNO¯ signal appears at surface temperatures 

below 360 K. 
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Fig. S5 Scattering at elevated surface temperature (420K). Energy distributions of: (a) O−, (b) 

OH− and (c) NO− from O+ bombardment of Pt exposed to 1×10-7 Torr NH3 at various O+ 

incidence energies, as indicated. 
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Fig. S6 Kinematic analysis for scattering at 420 K. Exit energies of O−, OH−, and NO− from 

O+/Pt(NH3) as a function of O+ incidence energy. The data points are obtained from the 

distributions of Fig. S5. The solid line for O− is linear fitting with a slope calculated from 

standard BCT. The lines for OH− and NO− are linear fittings with slopes predicted from a 

modified BCT for Eley-Rideal reactions. The kinematic behavior is similar to that found at room 

temperature, with one exception. The inelastic energy loss for OH− and NO− ion exits at 420 K is 

about 2-3 eV lower than that observed at room temperature, which may be caused by Pt work 

function change upon surface annealing. 
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Fig. S7 Oxidation with molecular O2
+ projectiles. Exit energies of O2

−, HO2
−, O−, OH−, NO− and 

HNO− from O2
+/Pt(NH3) as a function of O2

+ incidence energy. The data points are obtained 

from the distributions of Fig. 4. The solid line for O2
− is linear fitting with a slope calculated 

from BCT assuming consecutive collisions of the two oxygen atoms with the same surface atom. 

The HO2
−

 exit data can be captured by the O2
− kinematic factor with ~3.8 eV larger inelastic 

energy loss. The exit energy of O− is roughly half of that for O2
− exit, though it cannot be fitted 

linearly.  The OH−, NO− and HNO− exit energy cannot be described by Eley-Rideal reactions 

between dissociated O and adsorbed H, N and NH species. There must be additional surface 

interactions, currently not understood (possibly similar to hot-atom reactions). 

 


