Supporting Information

CO_{2} capture in ionic liquid 1-alkyl-3-methylimidazolium acetate: A concerted mechanism without carbene

Fangyong Yan, ${ }^{1}$ Nilesh R. Dhumal, ${ }^{1}$ Hyung J. Kim ${ }^{1,2 *}$

1. Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA.
2. School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea

* Permanent address: Carnegie Mellon University. Email: hjkim@cmu.edu

Table of Contents

S1 Supplementary tables
S2 Classical molecular dynamics simulations for IP and IP/CO $/ \mathrm{CO}_{2}$ mixture.
S3 $\quad \mathrm{CO}_{2}$ geometry and charge variations in the $12 \mathrm{IP}+6 \mathrm{CO}_{2}$ system.
S4 Constrained ab inito simulation results for the $2 \mathrm{IP}+40 \mathrm{CO}_{2}$ system.
S5 Supplementary figures.

S1 Supplementary tables

Table S1. IP and IP/CO ${ }_{2}$ mixture densities ${ }^{\text {a }}$

IP and $\mathrm{IP} / \mathrm{CO}_{2}$ mixture	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
8 IP	1.080
$8 \mathrm{IP}+1 \mathrm{CO}_{2}$	1.115
$8 \mathrm{IP}+2 \mathrm{CO}_{2}$	1.100
$8 \mathrm{IP}+16 \mathrm{CO}_{2}$	1.133
$12 \mathrm{IP}+6 \mathrm{CO}_{2}$	1.019
$2 \mathrm{IP}+40 \mathrm{CO}_{2}$	1.006

${ }^{\text {a) }}$ All system densities are obtained by classical MD simulations in the NPT ensemble at 298 K and 1 bar. For ab initio MD simulations in the $N V T$ ensemble at 298 K , classical MD configurations whose densities are arbitrarily close to the average densities of the $N P T$ ensemble are used as starting structures.

Table S2. Energy barrier E_{a} along the C2-Cc coordinate and activation free energy ${ }^{\text {a) }}$

System	$E_{a}{ }^{\text {b) }}$	Activation free energy ${ }^{\text {b }}$
$2 \mathrm{IP}+40 \mathrm{CO}_{2}$	~ 12.5	$\sim 8-9$

${ }^{\text {a) }}$ Energy units: kcal/mol.
${ }^{\text {b) }}$ Obtained by integrating the mean force (Fig. S5) from $2.4 \AA$ A to $3.9 \AA$
${ }^{\text {c) }}$ Determined as the difference of E_{a} and the zero-point energy of C2-H2 stretching vibration of EMI ${ }^{+}$.

S2 Classical molecular dynamics simulations for IP and IP/CO2 mixture.

The pure IL and the $256 \mathrm{IP}+64 \mathrm{CO}_{2}$ mixture were annealed from 600 K to 298 K in steps of 50 K in the $N P T$ ensemble at 1 bar, while the $256 \mathrm{IP}+512 \mathrm{CO}_{2}$ mixture was annealed from 400 K . At each annealing step, the systems were annealed for 4 ns and equilibrated for another 4 ns . At 298 K , the systems were equilibrated for 6 ns , followed by a 6 ns production run, from which radial distribution functions (RDFs) were calculated. Classical MD results thus obtained (Fig. S1) show a very good agreement with ab intio

MD results in Fig. 2, indicating that the latter are reliable despite their small system size and short simulation time.

S3 $\quad \mathrm{CO}_{2}$ geometry and charge variations in the $\mathbf{1 2} \mathbf{I P}+\mathbf{6} \mathrm{CO}_{\mathbf{2}}$ system.

For the C2-Cc distance between $2.7 \AA$ to $4 \AA$, the average value of the Oc-Cc-Oc angle remains unchanged at $172^{\circ}-173^{\circ}$ with the maximum value of 180° (Fig. S3). This indicates that CO_{2} mainly retains a linear geometry away from the cation. Nonetheless, the minimum value of the Oc-Cc-Oc angle reaches 156°, revealing that there is significant bending of CO_{2} in some cases. This is due to interactions of CO_{2} with Oa of OAc^{-}. As CO_{2} approaches the C 2 site of EMI^{+} more closely, its geometry becomes progressively more bent. The electron density migration to CO_{2} and the resulting increase in $\mathrm{C} 2-\mathrm{Cc}$ interactions (cf. Fig. S2) are responsible for this geometry change. The $\mathrm{Oc}-\mathrm{Cc}-\mathrm{Oc}$ angle shows a rather abrupt change near the $\mathrm{C} 2-\mathrm{Cc}$ distance of $2.1 \AA$. This is caused by transfer of H 2 from the C 2 site of EMI^{+}to one of the Oa sites of OAc^{-}.

S4 Constrained ab inito simulation results for the $2 \mathrm{IP}+40 \mathrm{CO}_{2}$ system.

As shown in Figs. S6 and S7, the 2:40 system composed of 2 IPs and $40 \mathrm{CO}_{2}$ molecules (corresponding to a dense CO_{2} environment) exhibits back proton transfer in contrast to the 12:6 system in Figs. 5 and S4. This is ascribed to the relatively large C2-Cc distance, which yields weak C2-Cc interactions when proton transfers. For example, the mean force between C 2 and Cc at $2.38 \AA$ subsequent to proton transfer is close to 0 (Fig. S5). This means that at this separation, the driving force to form a chemical bond between C 2 and Cc following proton transfer is on average not strong. Thus, when the constraint on the $\mathrm{C} 2-\mathrm{Cc}$ distance is removed after proton transfer, in some cases, CO_{2} approaches the C 2 site rapidly and forms a carboxylate compound but in other cases, CO_{2} moves away and proton transfers back to the C 2 site quickly. The energy cost for CO_{2} approach within $2.4 \AA$ of EMI^{+}was found to be $\sim 12.5 \mathrm{kcal} / \mathrm{mol}$ (cf. Table S2 and Fig. S5).

S5 Supplementary figures

Fig. S1 Classical MD results for radial distribution functions at 298 K . (a) Distributions of C2 (solid) and H 2 (dashed) of EMI^{+}around Oa of OAc^{-}. (b) Distributions of Cc, carbon atom of CO_{2}, around C 2 (solid) of EMI^{+}and Oa (dashed) of OAc^{-}. The results for the $256 \mathrm{IP}+64 \mathrm{CO}_{2}$ and $256 \mathrm{IP}+512 \mathrm{CO}_{2}$ mixture systems are shown in blue and red, respectively, while those of neat IL (256 IPs) are displayed in black.

Fig. S2 CO_{2} charge variations with the $\mathrm{C} 2-\mathrm{H} 2$ distance (blue circles) and $\mathrm{Oc}-\mathrm{Cc}-\mathrm{Oc}$ angle (red squares) in the $12 \mathrm{IP}+6 \mathrm{CO}_{2}$ system at 298 K . The C2-Cc distance is fixed at $2.1 \AA$.

Fig. S3 Oc-Cc-Oc angle of CO_{2} at different $\mathrm{C} 2-\mathrm{Cc}$ distances in the $12 \mathrm{IP}+6 \mathrm{CO}_{2}$ system. The maximum and minimum values of the fluctuating $\mathrm{Oc}-\mathrm{Cc}-\mathrm{Oc}$ angle are shown in red circles and green triangles, respectively, while its average values are marked as black squares.

Fig. S4 Time evolution of $\mathrm{CO}_{2}-\mathrm{EMI}^{+}-\mathrm{OAc}^{-}$conformation with the $\mathrm{C} 2-\mathrm{Cc}$ distance fixed at $2.09 \AA$ in the $12: 6$ mixture: (a) C2-H2 (blue) and H2-Oa (black) distances; (b) average $\mathrm{Cc}-\mathrm{Oc}$ distance of CO_{2}; (c) $\mathrm{Cc}-\mathrm{C} 2-\mathrm{N} 3$ (black), $\mathrm{Cc}-\mathrm{C} 2-\mathrm{Q}$ (blue) and $\mathrm{Oc}-\mathrm{Cc}-\mathrm{Oc}$ (red) angles. Q is the mid-point of N1 and N3 of imidazolium cations. (d) Time evolution of the $\mathrm{C} 2-\mathrm{Cc}$ (green) and average $\mathrm{Cc}-\mathrm{Oc}$ (red) distances with the constraint on the $\mathrm{C} 2-\mathrm{Cc}$ distance removed after EMI^{+}-to- OAc^{-}proton transfer. The arrow marks the point of the constraint removal.

Fig. S5 Mean force between C 2 of EMI^{+}and Cc of CO_{2} in the $2 \mathrm{IP}+40 \mathrm{CO}_{2}$ system.

Fig. S6 Time evolution of $\mathrm{CO}_{2}-\mathrm{EMI}^{+}-\mathrm{OAc}^{-}$conformation with the $\mathrm{C} 2-\mathrm{Cc}$ distance fixed at $2.38 \AA$ in the 2:40 mixture: (a) $\mathrm{C} 2-\mathrm{H} 2$ (blue) and $\mathrm{H} 2-\mathrm{Oa}$ (black) distances; (b) average Cc-Oc distance of CO_{2}; (c) $\mathrm{Cc}-\mathrm{C} 2-\mathrm{N} 3$ (black), $\mathrm{Cc}-\mathrm{C} 2-\mathrm{Q}$ (blue) and $\mathrm{Oc}-\mathrm{Cc}-\mathrm{Oc}$ (red) angles. Q is the mid-point of N 1 and N 3 of imidazolium cations. (d) Time evolution of the $\mathrm{C} 2-\mathrm{Cc}$ (green) and average $\mathrm{Cc}-\mathrm{Oc}$ (red) distances with the constraint on the $\mathrm{C} 2-\mathrm{Cc}$ distance removed after EMI^{+}-to- OAc^{-}proton transfer. The arrow marks the point of the constraint removal.

Fig. S7 Time evolution of $\mathrm{CO}_{2}-\mathrm{EMI}^{+}-\mathrm{OAc}^{-}$conformation with the $\mathrm{C} 2-\mathrm{Cc}$ distance fixed at $2.50 \AA$ in the 2:40 mixture: (a) $\mathrm{C} 2-\mathrm{H} 2$ (blue) and $\mathrm{H} 2-\mathrm{Oa}$ (black) distances; (b) average $\mathrm{Cc}-\mathrm{Oc}$ distance of CO_{2}; (c) $\mathrm{Cc}-\mathrm{C} 2-\mathrm{N} 3$ (black), $\mathrm{Cc}-\mathrm{C} 2-\mathrm{Q}$ (blue) and $\mathrm{Oc}-\mathrm{Cc}-\mathrm{Oc}$ (red) angles. Q is the mid-point of N 1 and N 3 of imidazolium cations. (d) Time evolution of the $\mathrm{C} 2-\mathrm{Cc}$ (green) and average $\mathrm{Cc}-\mathrm{Oc}$ (red) distances with the constraint on the $\mathrm{C} 2-\mathrm{Cc}$ distance removed after EMI^{+}-to- OAc^{-}proton transfer. The arrow marks the point of the constraint removal.

